

School: School of Engineering and Technology

Program/s: B.Tech Mechanical Year: 3rd Semester: 1st

Examination: End Semester Examination Examination year: November 2023

Course Code: ME 302 Course Name: Heat and Mass Transfer

Date: 22/11/2023 Total Marks: 40 Time: 13:00 pm to 15:00 pm Total Pages: 1

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted/not permitted.

Q. No.	Details	Marks	COs*	BTL*
Q1	Derive the equation of critical thickness of insulation for the cylindrical section.	5	CO1	BT1. BT2. BT3.
Q2	 A. A large concrete slab 1 m thick has one dimensional temperature Distribution T = 4 - 10x + 20x² + 10x³ Where T is temperature and x is distance from one face towards other face of wall. If the slab material has thermal diffusivity of 2 × 10⁻³ m²/hr, what is the rate of change of temperature at the other face of the wall? (4 Marks) B. The composite wall of an oven consists of three materials, two of which are of known thermal conductivity, k_A = 20 W/m K and k_C = 50 W/m K, and known thickness, L_A = 0.30 m and L_C = 0.15 m. The third material, B, which is sandwiched between materials A and C, is of known thickness, L_B = 0.15 m, but unknown thermal conductivity k_B. Under steady-state operating conditions, measurements reveal an outer surface temperature of = 20°C, an inner surface temperature of = 600°C, and an oven air temperature of = 800°C. The inside convection coefficient h is known to be 25 W/m²K. What is the value of k_B? (5 Marks) C. A composite wall of a furnace has 3 layers of equal thickness having thermal conductivities in the ratio of 1:2:4. What will be the temperature drop ratio across the three respective layers? (3 marks) D. A wall of thickness 0.6 m has width has a normal area 1.5 m² and is made up of material of thermal conductivity 0.4 W/mK. The temperatures on the two sides are 800°C. What is the thermal resistance of the wall? (3 Marks) 	15	CO1	BT1, BT2, BT3
Q3	 Attempt any Three A. Explain the difference between Regenerative and Recuperative Heat Exchanger and mentioned their applications. B. Explain compact heat exchangers with neat sketch. C. Write difference between boiling and evaporation. D. Discuss Nusselt Number and Biot Number. 	15	CO1	BT1. BT2. BT3
Q4	Explain with neat sketch Hydro-dynamic boundary layer and thermal boundary layer.	5	CO1	BT1, BT2, BT3