

School: School of Engineering and Technology

Program/s: B.Tech(CSE)
Year: 3rd Semester: 6th

Examination: End Semester Examination

Examination year: May - 2023

Course Code: CS324

Course Name: Artificial Intelligence

Date: 15/05/2023 **Time:** 02:00 am to 04:00 am

Total Marks: 40 Total Pages: 13

Instructions:

a) Attempt All the Questions

b) No Calculator is allowed

Q. No.	Details	Marks	СО	BTLC
	Attempt All the Questions(1 marks each)	40		
Q.1	Minimax algorithm is		C02	BT1,
	A. only Optimal			BT2
	B. only Complete			
	C. Optimal and Complete			
	D. Not Optimal, Not Complete			
Q.2	There is no need of using activation function in output layer in case of regression p		C05	BT1, BT2
	A. True			BIZ
	B. False			
Q.3	Following are the points related to K-Nearest Neighbour ML algorithm.		C05	BT2, BT3,
	A. It is Supervised learning algorithm			BT4
	B. Used for Classification problem only.	1		
	C. H. is Law algorithm			
	D. Uses Euclidean, Manhattan and Minkowski distance to find the distance between			
	E. Sometimes uses Hamming distance.			
	A. Only A, B, C, D and E are true			
	B. Only A, B, C and D are true			
	C. Only C and D are true			
	D. Only B, C and D are true			
Q.4	Chat-GPT developed by OpenAI is an example of		C01	BT1, BT2
ų.,	A. Narrow AI			
	B. General AI			
	C. Strong Al			
	C. Strong 7.1		C02	BT2,
Q.5	According to Uniform Cost Shortest path algorithm the shortest path is			BT3, BT4,
4.5				BT5

	"A': {'B': 2, 'C': 2},		
Q.6	D. ABFG Area Under Curve (AUC) is the plot A. A plot 1-Specificity(FP rate) Vs Sensitivity(TP rate) B. Used to compare two or more Models. C. The area under curve shows truly predicted data points. D. The higher value of the area under AUC depicts higher accuracy A. A, B, C and D are true B. A, B and C are true C. C and D are true D. A, C and D are true	C04	BT2, BT3, BT4
Q.7	To create Word Embedding model, skip-gram technique must be used if corpora is A. False B. True	C05	BT1, BT2
Q.8	Select the algorithm which is more susceptible to over-fitting. A. Random Forest B. Decision Tree C. Gradient-Boosted Trees D. Extra Tree Classifier	C04	BT1, BT2
Q.9	The following image depicts activation function in ANN.	C05	BT2, BT3, BT4

		1	1
	A. RELU		
	B. Leaky ReLU		
	C. Sigmoid		
	D. Softmax		
2.12	E. tanh	C05	BT1,
Q.10	algorithm is used to find line of best fit.		BT2
	A. Gradient Descent		
	B. Gradient Fall		
	C. Gradient Lasso		
	D. Gradient Boosted		
Q.11	In deep learning networks optimizer is suitable for mid to large sized d	C05	BT1,
4.11	high dimensional data.		BT2
	A. SGD B. GD		
	C. ADAM		
	D. RMS-PROP		
	D. RMS-PROP		
Q.12	Z-Score is calculated as	C04	BT1, BT2
	A. M stands for Mean, SD stands for Standard Deviation		612
	B. less than M-3*SD and greater than M+3*SD		
	C. greater than M-3*SD and less than M+3*SD		
	D. less than M-2*SD and greater than M+2*SD		
	E. less than M-5*SD and greater than M+5*SD		
	-		
Q.13	The following image depicts following activation function in ANN.	C05	BT2, BT3,
			BT4
	1.0		
	$e^{z} - e^{-z}$		
	$0.5 / \sigma(z) = \frac{1}{\sigma^2 + \sigma^{-2}}$		
	e + e		
-			
	-10 -5 0.0 5 10		
	3 10		
	0.4		
	-0.≸		
	1.0		
	A. tanh		
	B. ReLU		
	C. Leaky ReLU		
	D. Sigmoid		
	- Constitution		

Q.14	For an image of width=9 and height=9, we must have 81 neurons in input layer. Then the next hidden layer will have how many neurons. 40 162	C05	BT2, BT3, BT4, BT5
	No Thumb Rule available to calculate neurons in hidden layer	505	BT2.
Q.15	Statement : Benefits of Feature Selection A. Reduces Overfitting B. Improves Accuracy C. Reduces Training Time D. Leads to smaller size of trained model	C05	B12, BT3, BT4
	A and B are true A and C are true A B and C are true A, B and D are true		

بز

Q.10	The state of red nidden neuron after application of Sigmoid function, weights are mentioned on graphs vertices in blue color (0.01) * [1] (1 Point) e is Eulers Constant whose value is 2.71 The state of the state	GU.	BT3, BT4, BT5
	○ 0.98○ 0.74		
	0.45		
Q.17	O.51		
	In CNN, if the image size is 30x30, the padding size is 4 pixels, the kernel size is 6x6, the stride is 2 then the resultant image will be of dimension. 15x15 16x16 17x17 28x28	C05	BT2, BT3, BT4, BT5
Q.18	If the independent variables (X) X-Sets are boolean variables, then algorithm is most suitable for Gaussian Naive Bayes Classifier.	C05	BT2, BT3, BT4
	Multinomial Naive Bayes Classifier Bernoulli Naive Bayes Classifier		

Ų.17	Choose the Feature selection methods A. Recursive Feature Elimination B. Principal Component Analysis C. Univariate Selection D. ExtraTreeClassifier E. Z-Score Analysis Only A. B. and E Only A. B. C. and E	Coa	BT3. BT4
	Only A. B. D and E		
Q.20	In deep learning, if the predicted values are labels like dog, cat, rat and mouse, thenactivation function and no. of neurons are needed at output layer (1 Point) softmax. 4 sigmoid. 4 sigmoid. 1	C05	BT2, BT4, BT5
	Consider graph below with total students 100 distributed in two courses viz CSE and BCA with DS and JAVA specialization. (Values written on edges of graph are student counts) Calculate conditional probability of P(Job Java, CSE) * [] (1 Point) 0.6 0.33	C03	BT2, BT3, BT4, BT5

).

4.22	Sellen:		
	Following statements are related to Backpropagation algorithm A. A process of finding optimal values of weights. B. The weights are learned from difference of actual output and predicted output as well as optimizers C. The Gradient Descent helps as one of the basic optimizer which finds the optimal weight value D. The loop process of back-propagation must be continued till local minima is achieved.	CUS	B B
	All statements are true		
	Statements A. B. and D. are true		
	Statements A. B and C are true		
	Statements B, C and D are true		
Q.23	Most suitable function at output layer for Binary classification is	C05	B
	○ tanh		
	sigmoid		
	O relu		
	softmax		
Q.24	The error metric used for problem is confusion matrix and for problem Mean Square Error (MSE) is used.	C04	B
	Regression. Classification		
	Classification, Regression		
	Classification, Classification		
	Regression, Classification		
Q.25	Consider the following Statement below	C03	B
	"Al is the future technology for all. Regarding the future of human, it is unpredictable as of now human are still intelligent, hence future is theirs."		B
	The conditional probability P(future the) and P(human now) is respectively and		
-(1. 0.66		
	○ 1.1		
	0.33.0.33		
	1, 0.5		

Q.20	The following image depicts activation function in ANN.		BT3, BT4
	* 🖳 (1 Point)		
	○ Sigmoid .		
	Softmax		
	ReLU		
	○ tanh		
	Output Probabilities [0.02]		0
	$ \begin{array}{c c} 5.1 \\ 2.2 \\ 0.7 \\ 1.1 \end{array} \longrightarrow \begin{array}{c} e^{z_i} \\ \sum_{j=1}^{K} e^{z_j} \end{array} \longrightarrow \begin{array}{c} 0.02 \\ 0.90 \\ 0.05 \\ 0.01 \\ 0.02 \end{array} $		
Q.27	The following image depicts activation function in ANN.	C05	BT2,
	* 🗓 (1 Point)		BT3, BT4
			0
	○ tanh		
	Sigmoid		
	ReLU		
	Softmax		

	max(0,x) 0 -100 -75 -50 -25 00 25 50 75 100		
Q.28	Following statements are related to Bagging Algorithms A. Creates multiple trees from sample of data and average accuracy of each sample tree is considered final accuracy. B. Creates only one single tree instead of many. At each level accuracy is calculated and the maximum is taken. C. Creates graphs instead of trees to model complexity present in dataset. D. One of the example is Gradient Boosted Trees. A is True B is True C is True	205	BT2, BT3, BT4
Q.29	Most suitable function at output layer for Binary classification is tanh sigmoid relu softmax	05	BT1, BT2
Q.30	Calculate the value of red hidden neuron after application of Sigmoid function. Weights are mentioned on graphs vertices in blue color (0.01) * [7] (1 Point) e is Eulers Constant whose value is 2.71 Input Hidden Chiv King Lander Chiv King Lan	C05	BT2, BT3, BT4, BT5

	0.98 0.74 0.45		
Q.31	Match the following 1. Completeness 2. Optimality 3. Time Complexity 4. Space Complexity 4. Space Complexity 1-A 2-B 3-C 4-D Match the following A. Algorithm gives exact solution to a random input. B. Storage space required to algorithm execution C. Time required by algorithm to generate solution D. Solution is guaranteed to be the best	C02	BT1, BT2
	1-A 2-D 3-B 4-C 1-A 2-D, 3-C 4-B 1-D, 2-B, 3-C 4-A		1
Q.32	Area Under Curve (AUC) is the plot A. A plot 1-Specificity(FP rate) Vs Sensitivity(TP rate) B. Used to compare two or more Models. C. The area under curve shows truly predicted data points. D. The higher value of the area under AUC depicts higher accuracy	C05	BT2, BT3, BT4
	A. B. C and D are true A. B and C are true C and D are true A. C and D are true		C

ų,,,,	As shown model results in confusion matrix here. Here the model has classified an animal as Cat and Not-Cat using some ML Classifier. The accuracy, precision, recall scores are, and respectively. * (1 Point) 82. 62. 61 61. 82 61. 82		BT3, BT4, BT5
	Actual		
	Cat Not cat		
	Get 107 23		
	Not cat 69 42		
Q.34	In deep learning, if the predicted values are labels like dog, cat, rat and mouse, thenactivation function and no. of neurons are needed at output layer. * (1 Point) softmax. 4 sigmoid. 4 sigmoid. 1	C05	BT2, BT3, BT4

ų.30	Consider following two documents Doc 1: You are on the right path as right path is beneficial. Doc 2: The right path to travel path to Mumbai is always turn right on cross roads. The TF-IDF value of the word "right" and "Mumbai" is and respectively. * (1 Point) 0.30, 0.60 0.60, 0.30 0.60, 0.35	COS	BT3, BT4, BT5
Q.39	Z-Score is calculated as * (1 Point) M stands for Mean. SD stands for Standard Deviation less than M-3*SD and greater than M+3*SD greater than M-3*SD and less than M+3*SD less than M-2*SD and greater than M+2*SD less than M-5*SD and greater than M+5*SD	C03	BT2, BT3, BT4, BT5
Q.40	In deep learning, if the predicted values are labels like dog, cat, rat and mouse, thenactivation function andno. of neurons are needed at output layer. * (1 Point) softmax. 4 sigmoid. 4 sigmoid. 1 **********End of Question Paper************************************	C05	BT2, BT3, BT4, BT5