

School: School of Engineering and Technology

Program/s: Civil Engineering Year: 2nd Semester: 4th

Examination: End Semester Examination Examination year: February-March 2023

Course Name: Fluid Mechanics II

Course Code: CE 217 Course
Date: 15/05/2023
Time: 10:00 am to 12.00 pm Total Marks: 40 Total Pages: 1

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted.

Q. No.	Details	Marks	COs*	BTL"
Q.1	Derive an equation for measuring depth of hydraulic jump?	5	CO4	BT1, BT2
Q.2	Derive the conditions for a section for most economical in trapezoidal shape.	5	CO3,	BT1, BT2
Q.3	The difference of water surface levels in two tanks, which are connected by two pipes in series of lengths 300 m and 350 m and diameters 250mm and 300mm respectively, is 10 m. Determine the rate of flow of water if coefficient of friction are 0.0052 and 0.0047 respectively. Consider all minor losses.	5	CO2	BT2, BT4
	OR			
Q.3	Show graphical representation of specific energy curve and derive the equation for critical depth and critical velocity.	5	CO3	BT2, BT1
Q.4	Derive an equation for the propeller thrust P which depends on the angular velocity w, speed V, diameter D, dynamic viscosity μ , mass density ρ , elasticity of the fluid medium which can be denoted by the speed of sound in the medium C. Solve it by Buckingham's η theorem	5	CO3 CO4	BT3 BT4
	OR			
Q.4	The frictional torque T of a disc of diameter D rotating at a speed N in a fluid of viscosity μ and density ρ in a turbulent flow. Solve it by Buckingham's π theorem.	5	CO3 CO4	BT3 BT4
Q.5	The resisting force R of a supersonic plane during flight can be considered as dependent upon the length of the air craft L, velocity V, air viscosity μ , air	5	CO3 CO4	BT3 BT4

density ρ and bulk modules K. Express the functional relationship between these variables by Relying's method.

Q.6	Define the following terms:	5		
	 Length of Hydraulic jump Alternate depth Rapidly varied flow Super-critical flow Steady non uniform flow 		CO3 CO4	BT2, BT1
Q.7	A rectangular channel carries water at a rate of 490 Liters/sec when bed slope is 1 in 2800. Find the most economical dimensions of channel if $C=55$	5	CO4	BT3 BT4
Q.8	Find the discharge through a rectangular channel 4.5m wide, having a depth of water 3.2m and bed slope 1 in 2000. Take the value of N = 0.03 in kutter's formula.	5	CO4	BT3 BT4