

School: School of Engineering and Technology

Program/s: B.Tech Civil Engineering

Year: 4th Semester: 8th

Examination: End Semester Examination

Examination year: May 2023

Course Code: CE416

Course Name: Transportation planning and Pavement Design - II

Date: 17/05/2023 Total Marks: 40

Time: 10:00 am to 12:00pm Total Pages:

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted.

→ *COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Q. No.	Details	Marks	COs*	BTL#
Q.1	Answer the following: (Attempt any four)	20	CO1, CO2, CO3	BT1, BT2, BT4
	 Why is bitumen used as binder material? How the binding property can be determined? State the significance of resilient modulus. 			
	3. Define strengthening of pavement. Why it is important to do strengthening?			
	What do you understand by deflection survey of pavement? Explain the procedure for the same.			
	Explain the importance of Checking Rigid pavement for Warping and Corner Stress.			
Q.2	A cement concrete pavement is to be designed for two lanes two-way national highway in Kanpur. The local two-way traffic is 4000 CV/day at the end of the construction period.	10		
	Calculate the design thickness of pavement and the stresses induced at all places			
	of slab. The design parameters are: 1. Flexural strength = 45kg/cm ²		CO3,	BT1, BT3, BT6
	 Effective modulus of subgrade reaction of the DLC sub base = 8 kg/cm³ Tyre pressure = 7 kg/cm² Rate of traffic increase = 0.070 			
	 4. Rate of traffic increase = 0.070 5. Spacing of joints = 4.5m 6. Width of slab = 3.5m 			
Q.3	It is proposed to construct a new 4-lane single carriageway section in plain	10		D.W.o.
	region. Design the pavement for new carriageway with following data: a) 4-lane single carriageway		CO3	BT3, BT5

b)	Initial traffic in each direction in the year of completion of construction	
	= 2000 CV/day	

- c) Design life = 15 years
- d) CBR of soil below 500mm of sub grade = 2.5%
- e) CBR of 500mm of sub grade from borrow pits = 22%
- f) Traffic growth rate = 4%

Combinations for base and sub base layers:

- 1) Foamed bitumen emulsion treated RAP over cemented subbase
- Cementitious base and cementitious sub base with SAMI at the interface of base and the bituminous layer.

Single	Axles	Tandem .	Axics
Load in tonnes	Expected repetitions	Load in tonnes	Expected repetitions
20	71127	. 36	35564
18	177820	32	35564
16	569023	28	71128
14	1280303	24	213384
12	2608024	20	177820
10	27622135	16	59273
Less than 10	3556397	Less than 16	237093

Single Axle Loads		Tandem Axle Loads		
Axle Load	Percentage of axle loads	Axle Load class, tons	Percentage of axle loads	
class, tons	0.6	34-38	0.3	
19-21	1.5	30-34	0.3	
17-19	4.8	26-30	0.6	
15-17		22-26	1.8	
13-15	10.8	18-22	1.5	
11-13	22.0	14-18	0.5	
9-11	23.3	Less than 14	2.0	
Less than 9	30.0			
Total	93.0	Total	7.0	

$$a = \left[0.8521 \times \frac{P}{qx\pi} + \frac{S}{\pi} \left(\frac{P}{0.5227 \times q}\right)^{0.5}\right]^{0.5}$$

**********End of Question Paper*******

CL.