

School: School of Engeineering and Technology Program/s: Electrical and Electronics Engineering

Year: 2nd Semester: 4th

Examination: End Semester Examination

Examination year: May - 2023

Course Code: EE 226 Course Name: Electro-magnetic Field Theory

Date: 19/05/2023

Time: 10:00 am to 12:00 noon Total Marks: 40 Total Pages: 01

Instructions:

→ Write each answer on a new page.

→ Assume the data when required.

→ Use of calculator is allowed.

	Attempt any Four: SECTION I	Mark	COs	8
Q.1	If $\overline{H} = 10 \sin(2 \times 10^8 t + 8 \times)$ a _y A/m in a medium where relative permeability is 2 and relative permittivity is 1 and zero conductivity, determine \overline{B} and \overline{E} .	s 40 05	204	1
Q.2	Given E = 10 sin ($\omega t - \beta z$) a_y in V/m in free space, determine \overline{D} , \overline{B} and \overline{H}	05	003	F1 F2
Q.3	A certain material has $\sigma=0$ and $\epsilon_r=1$ if $\overline{H}=4$ sin $(10^6\ t-0.01\ z)\overline{a}_y\ A/m$. Use Maxwell's equations to find μ_r .	05	CD4	10 M H
Q.4	Derive Displacement of current density and proof of modified ampere's law	05	.009	30
Q.5	Explain Maxwell's Equations in Different Forms.	05	531	W 10 10 10 10 10 10 10 10 10 10 10 10 10
Q.6	Attempt any Four: SECTION II What do you understand by Boundary conditions for two different media? What are the three different media for boundaries. Explain for Boundary conditions for two different dielectrics.	05	ce:	57
Q.7	Find the electric field intensity for an uniform sheet charge in YZ plane.	05	ani.	37
	The electric flux density in a charge free		~.	37
Q.8	$\vec{D} = 10x a_x + 5y a_y + kz a_z \mu C/m^2$. Find the constant k.	05	C02	37
Q.8 Q.9	D=10xd _x +5yd _y +kzd _z µC/m ² . Find the constant k. State the Gauss Law for Electric Flux and derive an expression for Maxwell first equation. Give the relation between D and E and give the important observations from the same.	0.5		31 31 31 31