

School: School of Engineering and Technology Program/s: Electrical and Electronics Engineering

Year: 3rd Semester: 6th

Examination: End Semester Examination

Examination year: May - 2023

Course Code: EE 435 Course Name: Electrical Power System II

 Date:
 16/05/2023
 Total Marks:
 40

 Time:
 14:00 to 16:00
 Total Pages:
 2

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted.

Q. No.	Attempt Any Four:	Marks	COs*	BTL*
Q.1	A delta connected balanced resistive load is connected across an unbalanced three phase supply. With currents in line A as $10 L 30^\circ$ and in line B as $15 L - 60^\circ$. Find the symmetrical components of line currents. Also find the symmetrical components of delta currents. Do you notice any relationship between symmetrical components of line and delta currents? Comments.	10	CO2	BT1, BT2, BT4, BT6
Q.2	The one-line diagram of an unloaded power system is shown in Figure 2. Reactance of the two sections of transmission line are shown on the diagram,	10	CO2	BT1, BT2, BT4, BT6
	Figure 2			
	The generators and transformers are rated as follows: Generator 1: 20 MVA, 13.8 kV, X= 0.2 pu Generator 2: 30 MVA, 18 kV, X= 0.2 pu Generator 3: 30 MVA, 20 kV, X= 0.2 pu Transformer T1: 25 MVA, 220Y/13.8Δ kV, X= 10%			

	Transformer T2: Single phase units each rated 10 MVA,127/18 kV, X= 109 Transformer T3: 35 MVA, 220Y/22Y kV, X= 10% Draw the impedance diagram with all reactance marked in per unit and with letters to indicate points corresponding to the one-line diagram Choose base of 50 MVA, 13.2 kV in the circuit of generator 1.			
Q.3	A 25 MVA, 11 kV generator with X _d " = 20 % is connected through a transformer, line and a transformer to a bus that supplies three identical motors as shown in Fig. 2. Each motor has X _d " = 25 % on a base of 5 MVA, 6.6 kV. The three-phase rating of the step-up transformer is 25 MVA, 11/66 kV with a leakage reactance of 10 % and that of step-down transformer is 25 MVA, 66/6.6 kV with a leakage reactance of 10%. The bus voltage at the motors is 6.6 kV. Find the symmetrical currents to be interrupted by circuit breakers A and B for a fault at (i) P and (ii) Q.		CO2	BT1, BT2, BT4, BT6
	<u>Fig. 2.</u>			
Q.4	Find the critical clearing angle for the system shown in <u>FIG. 3</u> for a three phase fault at point P. The generator is delivering 1.0 pu power under prefault conditions.	10	CO4	BT1, BT2, BT4, BT6
	E1 = 1 2pu jo.15 jo.15			

*******End of Question Paper********