Navrachana University School of Engineering & Technology

End-Semester Examination May 2023
B. Tech Mechanical Engineering
Second Year and Fourth Semester
ME323 Automation and Control System

Date: 22/05/2023 Time: 10:00 to 12:00

Max. Marks: 40

Instructions:

→ Write each answer on a new page

→ Use of calculator is permitted

→ COs=Course Outcome mapping. # BTL=Bloom's Taxonomy Level mapping

Ques No		Details		Marks	COs	BTL
Q-1.	Find the transfer function reduction techniques. C(s)	of the given below block diagram u / $R(s)$ G_1 G_2 G_3 H_1	sing block diagram	7	CO3	BTL3 BTL4
Q-2.	A12 X2	the system using Mason's Gain Formula 342 344 345 332 334 345 362)	7		BTL3 BTL4

Q-3.	Convert the below block diagram into a signal flow graph and find the transfer function of the system using Mason's Gain Formula		CO	BTL3
	U(s) Y(s) Y(s) 3			
	OR			
Q-4.	Find the transfer function for the given block diagram	8	CO3	BTL3
	G_2			BTL4
0.5	$\begin{array}{c c} & & & & \\ \hline \\ & & \\ \end{array}$			0
Q-5.	Derive the time response of a second-order system subjected to unit step input for Underdamped systems	5	CO4	BTL1
Q-6.	Derive the Time response of the First order system subjected to a unit step input. And explain the significance of time constant T	5	CO4	BTL1
Q-7.	The characteristic equation of a closed loop system is given by	8	CO5	BTL5
	$s^4 + 20ks^3 + 5s^2 + 10s + 15 = 0$			BTL6
	Determine the range of values K for the system to be stable.			
	OR			
	Check the stability of the following systems $1. \ s^5 + 6s^4 + 3s^3 + 2s^2 + s + 1 = 0$	8	CO5	BTL5 BTL6
	2. $s^5 + 2s^4 + 4s^3 + 4s^2 + 3s + 8 = 0$			

-----End of Question Paper-----