Enrollment No.

School:School of Engineering and TechnologyProgram/s:B.Tech MechanicalYear:3Semester:6Examination:End Semester ExaminationExamination year:May 2023

Course Code:	ME 312	Course Name:	Industrial Engineering and Operations Researc	:h
Date:	18/05/2023		Total Marks:	40
Time:	2:00 am to 4:0	0 pm	Total Pages:	3

Instructions:

→ Write each answer on a new page.

→ Use of a calculator is permitted/not permitted.

Q. No		Details									Marks	CO s*	BTL #
Q. 1	For a LPP following simplex table has been obtained after performing one iteration. Is the given solution optimal? If no, find out the optimal solution. Do the multiple optimal solutions exist? If Yes, Find the multiple optimal solutions as well.										8		
		Cj	3	2	5	0	0	0					
	Soluti on Vector Colum n		X1	X2	X3	S1	S ₂	S ₃	Bo	Minimu m Ratio		CO1	BT1. BT2
	0S1		0	4/3	0	1	-1/3	0	4				
.	5X3		1/2	1/3	1	0	1/6	0	2				
	0 S ₃		0	5/3	0	0	-2/3	1	4				
	Zj												
	C _j -Z _j												
Q. 2	Write the assumptions taken in Wilson's model of inventory control and solve following example. Consider the following data with reference to elementary deterministic economic order quantity model. Annual demand of item: 10000 units, Unit price: 10 Rs, Inventory carrying cost per unit per Year: 1.5 Rs, Cost per order: 30 Rs, Find the total number of economic orders per year to meet the annual demand.									8	CO3	BT1, BT3, BT6	

Q. 3	minimizes o a. C b. I:	w is the ba cost of transp Compute the s the given so Does the alter	portation in cost corres olution opti	the standa ponding to mal?	rd tabular f the present	format. t solution.	problem that	8		
			А	В	с	Supply				
		x	50	8	100 8	150				
		Y	12	100 8	11	100			CO1	BT2, BT3, BT4
		z	10	6 50	200 9	250				
		Demand	50	150	300					
Q. 4	PERT A The prob a. 15.60 2. The p netwo and f.	F new work a ctivity Te a 1 b 1 c 7 oability of co % orecedence r ork are giver (5 Marks) ctivity A B C D E	re given in (day) 5 3 mpleting th b. 50.0% relations an n in table. F	the followi V (day2) 4 1 e project in 6 d duration ind the tota redecessors - - A B C	ng table: (3 38 days is c. 81.4% (in days) c I float and f	Marks) of activities free float for Duration(I 2 4 2 3 2	activities e	10	C04	BT2, BT3 BT4 BT5
		F G		C D		4 6				

	3. In a project there are three path with same duration. If project needs to be crashed for one day, then how many path to be crashed? Explain your answer. (2 Marks)	6		
Q	in that the	Ū	C03 C04	BT2 BT3 BT5

************End of Question Paper**********