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FIRST AND SECOND-ORDER OPTIMALITY CONDITIONS FOR

UNCONSTRAINED L-FUZZY OPTIMIZATION PROBLEMS

U. M. PIRZADA AND V. D. PATHAK

Abstract. Based on the concept of parametric total order relation on L-fuzzy

numbers defined by S. Saito and H. Ishi [9], this paper establishes the first and
second order necessary and sufficient optimality conditions for unconstrained
multi-variable L-fuzzy optimization problems.

1. Introduction

The concept of fuzzy sets was introduced by L.A.Zadeh (1965). After this, many
applications of fuzzy sets have been developed. One of them is fuzzy optimization,
which accounts for any imprecision in the optimization problems. Bellman and
Zadeh(1970) introduced fuzzy optimization problems in [1] where they have stated
that a fuzzy decision can be viewed as the intersection of fuzzy goals and problem
constraints. Afterwards, a lot of articles dealing with fuzzy optimization problems
were published.

In this article, we use the definition of the total order relation on L-fuzzy number
space introduced by S. Saito and H. Ishi [9]. We define the twice H-differentiability
of fuzzy-valued functions over Rn. Using these concepts, we establish the first and
second order necessary optimality conditions and second order sufficient optimality
conditions for unconstrained multi-variable L-fuzzy optimization problems.

The paper is organized in 6 sections. In section 2, we give some basic definitions
regarding fuzzy numbers and fuzzy arithmetic. Section 3 provides continuity and
H-differentiability of fuzzy-valued functions defined on Rn. We define a paramet-
ric total order relation on fuzzy number space and local optimum for fuzzy-valued
functions in Section 4. Moreover, we prove first and second order optimality con-
ditions for a local optimum. In Section 5, we provide some illustrative examples to
justify the results. Finally, we conclude in Section 6 with a summary of the results
established.

2. Fuzzy Numbers

Definition 1. [2, 8] Let R be the set of real numbers and ã : R → [0, 1] be a fuzzy
set on R. We say that ã is a fuzzy number if it satisfies the following properties:

(i) ã is normal, that is, there exists x0 ∈ R such that a(x0) = 1;
(ii) ã is convex, that is, ã(tx + (1 − t)y) ≥ min{ã(x), ã(y)}, whenever x, y

∈ R and t ∈ [0, 1];
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(iii) ã(x) is upper semicontinuous on R, that is, {x/ã(x) ≥ α} is a closed subset
of R for each α ∈ (0, 1];

(iv) ã0 = cl{x ∈ R/ã(x) > 0} forms a compact set.

The set of all fuzzy numbers on R is denoted by F (R). For all α ∈ (0, 1], α-level
set ãα of any ã ∈ F (R) is defined as ãα = {x ∈ R/ã(x) ≥ α} . The 0-level set ã0 is
defined as the closure of the set {x ∈ R/ã(x) > 0}. By definition of fuzzy numbers,
we can prove that, for any ã ∈ F (R) and for each α ∈ (0, 1] , ãα is compact convex
subset of R, and we write ãα = [ãLα, ã

U
α ]. ã ∈ F (R) can be recovered from its α-cuts

by a well-known decomposition theorem, which states that

ã = ∪α∈[0,1]α · ãα

where union on the right-hand side is the standard fuzzy union.

Definition 2. [4, 7] For any ã, b̃ ∈ F (R) and λ ∈ R, we define uniquely the addition

ã⊕ b̃, difference ã⊖ b̃ and product λ⊙ ã as fuzzy numbers by defining their α-cuts
as follows:

(ã⊕ b̃)α = [ãLα + b̃Lα, ã
U
α + b̃Uα ]

(ã⊖ b̃)α = [ãLα − b̃Uα , ã
U
α − b̃Lα]

(λ⊙ ã)α = [λ · ãLα, λ · ãUα ], ∀α ∈ [0, 1].

Definition 3. A fuzzy number ã ∈ F (R) is said to be a L-fuzzy number if its
membership function µã is defined as

µã(ξ) =

{
L(m−ξ

l
)+ for ξ ≤ m

L( ξ−m
l

)+ for ξ > m

where m ∈ R , l > 0. L is a mapping from [0,∞] into [0, 1] and L(ξ)+ =
max(L(ξ), 0). The set of all L-fuzzy numbers on R is denoted by FL(R).

Definition 4. The membership function of a triangular fuzzy number ã is defined
by

ζã(r) =





(r−aL)
(a−aL)

if aL ≤ r ≤ a
(aU−r)
(aU−a)

if a < r ≤ aU

0 otherwise

which is denoted by ã = (aL, a, aU ). Here L(ξ) is given by

L(ξ) =

{
1− ξ

(a−aL)
if aL ≤ ξ ≤ a

1− ξ
(aU−a)

if a < ξ ≤ aU

The α-level set of ã is

ãα = [(1− α)aL + αa, (1− α)aU + αa].

Here, we can see that triangular fuzzy numbers are particular case of L-fuzzy
numbers.

3. Differential Calculus of Fuzzy-valued Function

3.1. Continuity of Fuzzy-valued Function.
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Definition 5. [7] We denote by K the set of all non-empty compact subsets of Rn.
The Hausdorff metric dH on K as defined in [5], is given by

dH(A,B) = max{sup
x∈A

inf
y∈B

||x− y||, sup
y∈B

inf
x∈A

||x− y||}.

Then the metric dF on F (R) is defined as

dF (ã, b̃) = sup
0≤α≤1

{dH(ãα, b̃α)}, for all ã, b̃ ∈ F (R).

Since ãα and b̃α are closed bounded intervals in R,

dF (ã, b̃) = sup
0≤α≤1

[max{|ãLα − b̃Lα|, |ã
U
α − b̃Uα |}].

Definition 6. [6] Let V be a real vector space and F (R) be a fuzzy number space.

Then a function f̃ : V → F (R) is called fuzzy-valued function defined on V. Cor-

responding to such a function f̃ and α ∈ [0, 1], we define two real-valued functions

f̃L
α and f̃U

α on V as f̃L
α (x) = (f̃(x))Lα and f̃U

α (x) = (f̃(x))Uα for all x ∈ V .

Definition 7. [8] Let f̃ : Rn → F (R) be a fuzzy-valued function defined on Rn.

We say that f̃ is continuous at c ∈ Rn if for every ǫ > 0, there exists a δ > 0 such
that, for all x ∈ Rn, with ‖x− c‖ < δ, we have dF (f̃(x), f̃(c)) < ǫ. That is,

lim
x→c

f̃(x) = f̃(c)

Proposition 1. [8] Let f̃ : Rn → F (R) be a fuzzy-valued function on Rn. If f̃

is continuous at c ∈ Rn, then functions f̃L
α and f̃U

α are continuous at c for all
α ∈ [0, 1].

3.2. H-differentiability of Fuzzy-valued Function on R. Let ã and b̃ be two
fuzzy numbers. If there exists a fuzzy number c̃ such that c̃ ⊕ b̃ = ã. Then c̃ is
called Hukuhara difference of ã and b̃ and is denoted by ã⊖H b̃.

The following proposition is very useful for considering the differentiation of
fuzzy-valued function.

Proposition 2. [8] Let ã and b̃ be two fuzzy numbers. If the Hukuhara difference

c̃ = ã⊖H b̃ exists, then c̃Lα = ãLα − b̃Lα and c̃Uα = ãUα − b̃Uα for all α ∈ [0, 1].

Definition 8. [8]Let X be an open subset of R. A fuzzy-valued function f̃ : X →

F (R) is said to be H-differentiable at x0 if there exists a fuzzy number Df̃(x0) such
that the limits

lim
h→0+

1

h
⊙ [f̃(x0 + h)⊖H f̃(x0)] and lim

h→0+

1

h
⊙ [f̃(x0)⊖H f̃(x0 − h)]

both exist and are equal to Df̃(x0). In this case, Df̃(x0) is called the H-derivative

of f̃ at x0.

Proposition 3. [8] Let X be an open subset of R. If a fuzzy-valued function

f̃ : X → F (R) is H-differentiable at x0 with derivative Df̃(x0), then f̃L
α and

f̃U
α are differentiable at x0 for all α ∈ [0, 1]. Moreover, we have (Df̃(x0))α =

[D(f̃L
α )(x0), D(f̃U

α )(x0)].
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3.3. H-differentiability of Fuzzy-valued Function on Rn.

Definition 9. [8] Let f̃ be a fuzzy-valued function defined on an open subset X of
Rn and let x̄ = (x̄1, ..., x̄n) ∈ X be fixed.

(i) We say that f̃ has the ith partial H-derivative Dif̃(x̄) at x̄ if the fuzzy-

valued function g̃(xi) = f̃(x̄1, .., x̄i−1, xi, x̄i+1, .., x̄n) is H-differentiable at

x̄i with H-derivative Dif̃(x̄). We also write Dif̃(x̄) as (∂f̃/∂xi)(x̄).

(ii) We say that f̃ is H-differentiable at x̄ if all the partial H-derivatives

∂f̃/∂x1, ..., ∂f̃/∂xn exists at x̄ and all but except possibly one partial H-
derivatives exist on some neighborhood of x̄ and are continuous at x̄ (in
the sense of fuzzy-valued functions).

(iii) We say that f̃ is continuously H-differentiable at x̄ if all of the partial H-

derivatives ∂f̃/∂xi, i = 1, ..., n, exist on some neighborhood of x̄ and are
continuous at x̄ (in the sense of fuzzy-valued functions).

Proposition 4. Let X be an open subset of Rn. If a fuzzy-valued function f̃ :
X → F (R) is H-differentiable at x̄ ∈ X. Then f̃L

α and f̃U
α are also differentiable

at x̄ ∈ X, for all α ∈ [0, 1]. Moreover, (Dif̃(x̄))α = [Di(f̃
L
α )(x̄), Di(f̃

U
α )(x̄)], i =

1,...,n.

Proof. The result follows from Proposition 1 and 3. �

Proposition 5. Let X be an open subset of Rn. If a fuzzy-valued function f̃ :
X → F (R) is continuously H-differentiable at x̄ ∈ X. Then f̃L

α and f̃U
α are also

continuously differentiable at x̄, for all α ∈ [0, 1].

Let f̃ be H-differentiable at x̄. Then the gradient of f̃ at x̄ is denoted by

∇f̃(x̄) = (D1f̃(x̄), ..., Dnf̃(x̄)),

and it defines a fuzzy-valued function from X to Fn(R) = F (R) × .... × F (R) (n

times), where each Dif̃(x̄) is a fuzzy number for i = 1,...,n. The α-level set of

∇f̃(x̄) is defined and denoted by

(∇f̃(x̄))α = ((D1f̃(x̄))α, ..., (Dnf̃(x̄))α),

where

(Dif̃(x̄))α = [Di(f̃
L
α )(x̄), Di(f̃

U
α )(x̄)],

i = 1,...,n.

Definition 10. Let f̃ : X → F (R), X ⊂ Rn be a fuzzy-valued function. Suppose

now that there is x̄ ∈ X such that gradient of f̃ , ∇f̃ , is itself H-differentiable at x̄,
that is, for each i, the function Dif̃ : X → F (R) is H-differentiable at x̄. Denote

the H-partial derivative of Dif̃ in the direction of ēj at x̄ by

D2
ij f̃ or

∂2f̃(x̄)

∂xi∂xj

, if i 6= j,

and

D2
iif̃ or

∂2f̃(x̄)

∂x2
i

, if i = j.
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Then we say that f̃ is twice H-differentiable at x̄, with second H-derivative ∇2f̃(x̄)
which is denoted by

∇2f̃(x̄) =




∂2f̃(x̄)
∂x2

1

... ∂2f̃(x̄)
∂x1∂xn

... ... ...
∂2f̃(x̄)
∂xn∂x1

... ∂2f̃(x̄)
∂x2

n




where ∂2f̃(x̄)
∂xi∂xj

∈ F (R), i,j = 1,...,n.

If f̃ is twice H-differentiable at each x̄ in X, we say that f̃ is twice H-differentiable

on X, and if for each i, j = 1,...,n, the cross-partial derivative ∂2f̃
∂xi∂xj

is continuous

function from X to F (R), we say that f̃ is twice continuously H-differentiable on
X.
The α-level set of ∇2f̃(x̄) is defined and denoted in matrix notation as

(∇2f̃(x̄))α = ((D2
ij f̃(x̄))α)

i,j = 1,...,n and α ∈ [0, 1], where (D2
ij f̃(x̄))α denotes α-cut of (D2

ij f̃(x̄)).

Proposition 6. Let f̃ : X ⊆ Rn → F (R) is differentiable with derivative ∇f̃ on X

and let each Dif̃ : X → F (R), i = 1,...,n, is also differentiable at x̄ with derivative

D2
ij f̃(x̄), i , j = 1,...,n. Then Dif̃

L
α and Dif̃

U
α are also differentiable at x̄, for all

α ∈ [0, 1]. Also, we have (D2
ij f̃(x̄))α = [D2

ij(f̃
L
α )(x̄), D

2
ij(f̃

U
α )(x̄)], i,j = 1,...,n.

Proof. Follows by Proposition 3.4. �

4. Optimality Conditions

4.1. Total order relation on FL(R). Let f̃ : X ⊆ Rn → FL(R) be a fuzzy-valued
function, where FL(R) is the set of L-fuzzy numbers. Inspired by [9], we define here
a total order relation on L-fuzzy numbers as follows

Definition 11. For any ã, b̃ ∈ FL(R), we say that ã �λ b̃, where ”�λ” is a paramet-
ric order relation on FL(R), for 0 ≤ λ ≤ 1 if only one of the following inequalities
hold:

(i) λ[ãL1 − ãL0 ] + ãL1 < λ[b̃L1 − b̃L0 ] + b̃L1 for ãL1 − ãL0 < b̃L1 − b̃L0
(ii) λ[ãL1 − ãL0 ] + ãL1 ≤ λ[b̃L1 − b̃L0 ] + b̃L1 for ãL1 − ãL0 ≥ b̃L1 − b̃L0

It can be easily proved that ”�λ” for any fixed λ ∈ [0, 1] is a total order relation

on FL(R). ã �λ b̃ is defined by b̃ �λ ã.

We write ã ≺λ b̃ if and only if ã �λ b̃. That is, ã ≺λ b̃ if and only if the following
inequalities fail simultaneously or hold simultaneously

(i) λ[b̃L1 − b̃L0 ] + b̃L1 < λ[ãL1 − ãL0 ] + ãL1 for b̃L1 − b̃L0 < ãL1 − ãL0
(ii) λ[b̃L1 − b̃L0 ] + b̃L1 ≤ λ[ãL1 − ãL0 ] + ãL1 for b̃L1 − b̃L0 ≥ ãL1 − ãL0

Also ã ≻λ b̃ is defined by b̃ ≺λ ã.

4.2. First-Order Condition. Consider unconstrained L-fuzzy optimization prob-
lem

Minimize f̃(x̄), x̄ ∈ X

where f̃ : Rn → FL(R) is a fuzzy-valued function and X ⊆ Rn. First we define
local minimum (maximum) and strict local minimum (maximum) of a fuzzy-valued
function
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Definition 12. Let f̃ : X ⊆ Rn → FL(R) and λ ∈ [0, 1] be fixed.

(1) A point x̄∗ ∈ X is a local minimum (maximum) of f̃ with respect to
parametric total order relation ”�λ” , if there exists r > 0 such that
f̃(x̄∗) �λ f̃(x̄) (f̃(x̄∗) �λ f̃(x̄)), for all x̄ ∈ X ∩B(x̄∗; r).

(2) A point x̄∗ ∈ X is called a strict local minimum (maximum) of f̃ with
respect to parametric total order relation ”�λ”, if there exists r > 0 such
that f̃(x̄∗) ≺λ f̃(x̄) (f̃(x̄∗) ≻λ f̃(x̄)), for all x̄ ∈ X ∩B(x̄∗; r).

We present now first-order necessary condition for optimality of a multi-variable
fuzzy-valued function.

Theorem 1. (FONC) Suppose x̄∗ ∈ intX = {x̄ ∈ X / there exists r > 0 such

that B(x̄∗; r) ⊂ X} ⊆ Rn be a local minimizer of f̃ : X → FL(R) with respect to

parametric total order relation “�λ”. Suppose also that f̃ is H-differentiable at x̄∗.
Then λ[∇f̃L

1 (x̄
∗)−∇f̃L

0 (x̄
∗)] +∇f̃L

1 (x̄
∗) = 0.

Proof. Since x̄∗ ∈ intX a local minimum of f̃ on X, by definition, we have f̃(x̄∗) �λ

f̃(x̄) for all x̄ ∈ X ∩B(x̄∗; r).
That is, only one of the following inequalities hold:

(i) λ[f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)] + f̃L
1 (x̄

∗) < λ[f̃L
1 (x̄)− f̃L

0 (x̄)] + f̃L
1 (x̄)

for f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗) < f̃L
1 (x̄)− f̃L

0 (x̄)

(ii) λ[f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)] + f̃L
1 (x̄

∗) ≤ λ[f̃L
1 (x̄)− f̃L

0 (x̄)] + f̃L
1 (x̄)

for f̃L
1 (x

∗)− f̃L
0 (x

∗) ≥ f̃L
1 (x̄)− f̃L

0 (x̄).

Therefore, for any x̄ ∈ X ∩B(x̄∗; r) we have either

λ[f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)] + f̃L
1 (x̄

∗) < λ[f̃L
1 (x̄)− f̃L

0 (x̄)] + f̃L
1 (x̄).

or

λ[f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)] + f̃L
1 (x̄

∗) ≤ λ[f̃L
1 (x̄)− f̃L

0 (x̄)] + f̃L
1 (x̄).

Let ēi = [0, ..., 1, ...0]T be a unit vector 1 in the ith location. Then (x̄∗ + hēi)
with h > 0 will represent a purturbtation of magnitude h in x̄∗ in the direction ēi.

Let x̄ = x̄∗ + hēi , where h < r, then we have

λ[f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)] + f̃L
1 (x̄

∗) < or ≤ λ[f̃L
1 (x̄

∗ + h)− f̃L
0 (x̄

∗ + h)] + f̃L
1 (x̄

∗ + h)

Similarly, for x̄ = x̄∗ − hēi , we have

λ[f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)] + f̃L
1 (x̄

∗) < or ≤ λ[f̃L
1 (x̄

∗ − h)− f̃L
0 (x̄

∗ − h)] + f̃L
1 (x̄

∗ − h)

for sufficiently small h. That is,

(4.1)

λ
(
f̃L
1 (x̄

∗+h)− f̃L
1 (x̄

∗)
)
−λ

(
f̃L
0 (x̄

∗+h)− f̃L
0 (x̄

∗)
)
+ f̃L

1 (x̄
∗+h)− f̃L

1 (x̄
∗) > or ≥ 0.

(4.2)

λ
(
f̃L
1 (x̄

∗−h)− f̃L
1 (x̄

∗)
)
−λ

(
f̃L
0 (x̄

∗−h)− f̃L
0 (x̄

∗)
)
+ f̃L

1 (x̄
∗−h)− f̃L

1 (x̄
∗) > or ≥ 0.
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Since f̃ is H-differentiable at x̄∗, by Proposition 3.4, f̃L
α is also differentiable at x̄∗

for all α ∈ [0, 1]. Dividing the inequalities (4.1) and (4.2) by h and −h respectively
and taking limit as h → 0, we get

λ[∇f̃L
1 (x̄

∗)−∇f̃L
0 (x̄

∗)] +∇f̃L
1 (x̄

∗) ≥ 0

λ[∇f̃L
1 (x̄

∗)−∇f̃L
0 (x̄

∗)] +∇f̃L
1 (x̄

∗) ≤ 0

which gives

λ[∇f̃L
1 (x̄

∗)−∇f̃L
0 (x̄

∗)] +∇f̃L
1 (x̄

∗) = 0.

�

4.3. Second-Order Conditions. In this section, first we present the second-order
necessary conditions for optimality of a fuzzy-valued function defined on Rn.

Theorem 2. (SONC) Suppose f̃ : X ⊆ Rn → FL(R) be a continuously H-
differentiable fuzzy-valued function, and x̄∗ in X is a point in the interior of X.

(1) If f̃ has a local minimum at x̄∗, then λ[∇2f̃L
1 (x̄

∗)−∇2f̃L
0 (x̄

∗)]+∇2f̃L
1 (x̄

∗)
is positive semidefinite.

(2) If f̃ has a local maximum at x̄∗, then λ[∇2f̃L
1 (x̄

∗)−∇2f̃L
0 (x̄

∗)]+∇2f̃L
1 (x̄

∗)
is negative semidefinite.

We adopt a two step procedure to prove this theorem. We first prove this result
for the case where n = 1 i.e., (X ⊆ R) and then we use this result to prove the
general case.

Proof. Case 1: n = 1

When n = 1, f̃ : X ⊆ R → FL(R) and λ[∇2f̃L
1 (x̄

∗) −∇2f̃L
0 (x̄

∗)] +∇2f̃L
1 (x̄

∗) is
real number. We have to prove that

λ[∇2f̃L
1 (x̄

∗)−∇2f̃L
0 (x̄

∗)] +∇2f̃L
1 (x̄

∗) ≥ 0.

Since f̃ has a local minimum at x̄∗, by definition, we have f̃(x̄∗) �λ f̃(x̄) for all
x̄ ∈ X ∩B(x̄∗; r) and r > 0. That is, only one of the following inequalities hold:

(i) λ[f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)] + f̃L
1 (x̄

∗) < λ[f̃L
1 (x̄)− f̃L

0 (x̄)] + f̃L
1 (x̄)

for f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗) < f̃L
1 (x̄)− f̃L

0 (x̄)

(ii) λ[f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)] + f̃L
1 (x̄

∗) ≤ λ[f̃L
1 (x̄)− f̃L

0 (x̄)] + f̃L
1 (x̄)

for f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗) ≥ f̃L
1 (x̄)− f̃L

0 (x̄)

for all x̄ ∈ X ∩B(x̄∗; r) and 0 ≤ λ ≤ 1.

Consider Taylor’s series expansion of f̃L
α at x̄∗ for sufficiently small h such that

x̄∗ + h ∈ B(x̄∗; r) and

f̃L
α (x̄

∗ + h) = f̃L
α (x̄

∗) + hDf̃L
α (x̄

∗) +
1

2
h2D2f̃L

α (x̄
∗) +O(h3)

Using this,
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{
λ[f̃L

1 (x̄
∗ + h)− f̃L

0 (x̄
∗ + h)] + f̃L

1 (x̄
∗ + h)

}
=

{
λ[f̃L

1 (x̄
∗)− f̃L

0 (x̄
∗)] + f̃L

1 (x̄
∗)
}
+

+h
{
λ[Df̃L

1 (x̄
∗)−Df̃L

0 (x̄
∗)] +

Df̃L
1 (x̄

∗)
}
+

h2

2

{
λ[D2f̃L

1 (x̄
∗)−D2f̃L

0 (x̄
∗)] +

D2f̃L
1 (x̄

∗)
}

+O(h3)

At local minimum, λ[Df̃L
1 (x̄

∗)−Df̃L
0 (x̄

∗)] +Df̃L
1 (x̄

∗) = 0. Upon choosing h suffi-
ciently small, we can ensure that the term

h2

2

{
λ[D2f̃L

1 (x̄
∗)−D2f̃L

0 (x̄
∗)] +D2f̃L

1 (x̄
∗)
}

dominates the remainder term O(h3). Thus at a local minimum, we have

λ[D2f̃L
1 (x̄

∗)−D2f̃L
0 (x̄

∗)] +D2f̃L
1 (x̄

∗) ≥ 0.

Case 2 : n > 1

We prove part 1. Let x̄∗ be a local minimum of f̃ on X. We have to show that
for any z ∈ Rn , z 6= 0, we have z

′

Az ≥ 0, where

A = λ[∇2f̃L
1 (x̄

∗)−∇2f̃L
0 (x̄

∗)] +∇2f̃L
1 (x̄

∗).

Pick any z ∈ Rn, define the fuzzy-valued function g̃ : R → F (R) by g̃(t) =

f̃(x̄∗ + tz).

Note that g̃(0) = f̃(x̄∗). For |t| sufficiently small, f̃(x̄∗) �λ f̃(x̄∗ + tz), since

f̃(x̄) has a local minimum at x̄∗.
It follows that there exists a ǫ > 0 such that g̃(0) �λ g̃(t) for all t ∈ (−ǫ, ǫ). That

is, 0 is a local minimum of g̃.
By case 1, therefore we must have

λ[D2g̃L1 (0)−D2g̃L0 (0)] +D2g̃L1 (0) ≥ 0.

On the other hand, it follows from the definition of g̃, that g̃ is twice continuously
H-differentiable, as g̃(t) = f̃(x∗ + tz) and

λ[D2g̃L1 (0)−D2g̃L0 (0)] +D2g̃L1 (0) = z
′

Az

where A = λ[∇2f̃L
1 (x̄

∗)−∇2f̃L
0 (x̄

∗)] +∇2f̃L
1 (x̄

∗) , so that

z
′

Az = λ[D2g̃L1 (0)−D2g̃L0 (0)] +D2g̃L1 (0) ≥ 0,

as desired. This completes the proof of Part 1. Part 2 is proved similarly. �

Now we prove the second-order sufficient conditions for x̄∗ to be a strict local
minimizer (maximizer) of a fuzzy-valued function defined on Rn.
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Theorem 3. (SOSC) Suppose f̃ : X ⊆ Rn → FL(R) is a twice continuously
H-differentiable function.

(1) If λ[∇f̃L
1 (x̄

∗) − ∇f̃L
0 (x̄

∗)] +∇f̃L
1 (x̄

∗) = 0 and λ[∇2f̃L
1 (x̄

∗) −∇2f̃L
0 (x̄

∗)] +

∇2f̃L
1 (x̄

∗) is positive definite, then x̄∗ is a strict local minimum of f̃ on X.

(2) If λ[∇f̃L
1 (x̄

∗) − ∇f̃L
0 (x̄

∗)] +∇f̃L
1 (x̄

∗) = 0 and λ[∇2f̃L
1 (x̄

∗) −∇2f̃L
0 (x̄

∗)] +

∇2f̃L
1 (x̄

∗) is negative definite, then x̄∗ is a strict local maximum of f̃ on X.

Proof. We prove Part 1, Part 2 is proved similarly. Here we have to prove that x̄∗

is a strict local minimum of f̃ on X. That is, by definition

f̃(x̄∗) ≺λ f̃(x̄)

for all x̄ ∈ X ∩B(x̄∗; r) and for fixed λ ∈ [0, 1].
That means, we have show that the following inequalities fail simultaneously or

hold simultaneously.

(i) λ[f̃L
1 (x̄)− f̃L

0 (x̄)] + f̃L
1 (x̄) < λ[f̃L

1 (x̄
∗)− f̃L

0 (x̄
∗)] + f̃L

1 (x̄
∗)

for f̃L
1 (x̄)− f̃L

0 (x̄) < f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)

(ii) λ[f̃L
1 (x̄)− f̃L

0 (x̄)] + f̃L
1 (x̄) ≤ λ[f̃L

1 (x̄
∗)− f̃L

0 (x̄
∗)] + f̃L

1 (x̄
∗)

for f̃L
1 (x̄)− f̃L

0 (x̄) ≥ f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)

for all x̄ ∈ X ∩B(x̄∗; r) and for fixed λ ∈ [0, 1].

Let H̃L(x̄∗) = λ[∇2f̃L
1 (x̄

∗) − ∇2f̃L
0 (x̄

∗)] +∇2f̃L
1 (x̄

∗). Using assumption 2, and
Rayleigh’s inequality (Ref. [3], pp. 34) it follows that if d̄ 6= 0 then

λmin(H̃
L(x̄∗))‖d̄‖

2
≤ d̄T H̃L(x̄∗)d̄

where λmin(H̃
L(x̄∗)) is the smallest eigen value of H̃L(x̄∗). By Taylor’s theorem

and assumption 1,

{
λ[f̃L

1 (x̄
∗ + d)− f̃L

0 (x̄
∗ + d)] + f̃L

1 (x̄
∗ + d)

}
−

{
λ[f̃L

1 (x̄
∗)− f̃L

0 (x̄
∗)] + f̃L

1 (x̄
∗)
}

=
1

2
d̄T H̃L(x̄∗)d̄+O(‖d̄‖

2
)

≥
λmin(H̃

L(x̄∗))

2
‖d̄‖

2
+O(‖d̄‖

2
)

Hence for all d̄ such that ‖d̄‖ is sufficiently small,

{λ[f̃L
1 (x̄

∗ + d)− f̃L
0 (x̄

∗ + d)] + f̃L
1 (x̄

∗ + d)} > {λ[f̃L
1 (x̄

∗)− f̃L
0 (x̄

∗)] + f̃L
1 (x̄

∗)}.

This inequality fails the above two inqualities (i) and (ii) simultaneously. There-

fore we say that f̃ has strict local minimizer at x̄∗ with respect to the total order
relation ” �λ ”. �

5. Illustrative Examples

Example 1.

Minimize f̃(x1, x2) = (1̃⊙ x2
1)⊕ (0̃.5⊙ x2

2)⊕ (3̃⊙ x2)⊕ 4̃.5, x1, x2 ∈ R

where 1̃ = (0, 1, 2), 0̃.5 = (0.4, 0.5, 0.6), 3̃ = (2, 3, 4) and 4̃.5 = (3.5, 4.5, 5.5) are tri-
angular fuzzy numbers defined on R and with respect to total order relation ” �λ ”
for some fixed λ ∈ [0, 1].
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Here f̃L
α (x1, x2) = αx2

1 + (0.4 + α0.1)x2
2 + (2 + α)x2 + (3.5 + α),

∇f̃L
α =

(
2αx1

2(0.4 + 0.1α)x2 + (2 + α)

)
.

By first order necessary condition λ[∇f̃L
1 (x̄)−∇f̃L

0 (x̄)] +∇f̃L
1 (x̄) = 0.

That is

λ2x1 + 2x1 = 0

λ(0.2x2 + 1) + x2 + 3 = 0

Solving these equations, we get parametric solution

x̄∗ =
(
0,−

(λ+ 3)

0.2λ+ 1

)

Now

λ[∇2f̃L
1 (x̄)−∇2f̃L

0 (x̄)] +∇2f̃L
1 (x̄) =

(
2λ+ 2 0

0 0.2λ+ 1

)

where

∇2f̃L
α (x̄) =

(
2α 0
0 2(0.4 + 0.1α)

)
.

Since this matrix is positive definite for all λ ∈ [0, 1], the point x̄∗ =
(
0,− (λ+3)

0.2λ+1

)

satisfies the FONC, SONC and SOSC. So it is a strict local minimizer of given
fuzzy-valued function.

Example 2.

Minimize f̃(x1, x2) = (1̃⊙ x2
1)⊕ ((−̃1)⊙ x2

2), x1, x2 ∈ R

where 1̃ = (0, 1, 2) and (−̃1) = (−2,−1, 0) are triangular fuzzy numbers defined on
R and with respect to total order relation ” �λ ” for some fixed λ ∈ [0, 1].

Here f̃L
α (x1, x2) = αx2

1 + (−2 + α)x2
2,

∇f̃L
α =

(
2αx1

2(−2 + α)x2

)
.

By first order necessary condition λ[∇f̃L
1 (x̄)−∇f̃L

0 (x̄)] +∇f̃L
1 (x̄) = 0.

That is

λ2x1 + 2x1 = 0

λ2x2 − 2x2 = 0.

Solving these equations, we get the solution

x̄∗ = (0, 0).

We evaluate

λ[∇2f̃L
1 (x̄)−∇2f̃L

0 (x̄)] +∇2f̃L
1 (x̄) =

(
2λ+ 2 0

0 2λ− 2

)

where

∇2f̃L
α (x̄) =

(
2α 0
0 2(−2 + α)

)
.
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The point x̄∗ = (0, 0) satisfies the FONC but SONC is not satisfied, since 2λ+2 >
0 but (2λ + 2)(2λ − 2) ≤ 0 for λ ∈ [0, 1). Therefore x̄∗ = (0, 0) is not optimum
point for given fuzzy-valued function, if λ ∈ [0, 1).

6. Conclusion

In this article we have used the concept of L-fuzzy numbers and a total order
relation ”�λ” on space of L-fuzzy numbers as introduced in [9]. By considering
the optimization problems with respect to this total order relation, we have derived
the first and second order neccessary conditions as well as second order sufficient
conditions for optimality of a fuzzy-valued function defined on Rn. We have also
given two illustrative examples to justify the conditions.
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