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In this paper we derive the necessary and sufficient Kuhn-Tucker like optimality  
conditions  for nonlinear  fuzzy optimization  problems  with  fuzzy valued  objective  
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diffrentiability of fuzzy-valued functions. 
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1 Introduction 
 

Classical optimization techniques have been successfully applied for years. In real 
process optimization, there exist different types of uncertainties in the system. 
Zimmermann [16] pointed out various kinds of uncertainties that can be categorized 
as stochastic uncertainty and fuzziness. The optimization under a fuzzy environment 
or which involve fuzziness is called fuzzy optimization. 
 
Bellman and Zadeh in 1970 [1] proposed the concept of fuzzy decision and the 
decision model  under fuzzy environments. After that,  various approaches  to  fuzzy 
linear  and nonlinear optimization, have been developed over the years by researchers. 
 
The nondominated solution of a nonlinear optimization problem with fuzzy-valued 
objective  function  was proposed  by Wu [10]. Using the concept of continuous 
differentiability of fuzzy-valued  functions,  he derived  the  sufficient  optimality  
conditions for obtaining the nondominated solution of fuzzy optimization problem 
having fuzzy- valued objective function with real constraints. However, the fuzzy 
optimization problem having fuzzy-valued constraints can not be solved by using 
the results of Wu [10]. In this article, we establish Kuhn-Tucker like both necessary 
and sufficient optimality conditions for obtaining the nondominated solution of a 
nonlinear fuzzy optimization 
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problem with fuzzy-valued objective function and fuzzy-valued constraints.

In Section 2, we introduce definition of fuzzy number, basic properites and arithmetics

of fuzzy numbers. In Section 3, we consider the differential calculus of fuzzy-valued func-

tions defined on R and R
n using hukuhara differentiability of fuzzy-valued functions.

In Section 4, we provide nondominated solution of unconstrained fuzzy optimization

problems by proving the first and second order optimality conditions. In Section 5, we

provide nondominated solution of nonlinear constrained fuzzy optimization problems

by proving the Kuhn-Tucker like optimality conditions for the same. And at last we

conclude in Section 6.

2 Preliminaries

Definition 1 [6] Let R be the set of real numbers and ã : R → [0, 1] be a fuzzy set.

We say that ã is a fuzzy number if it satisfies the following properties:

(i) ã is normal, that is, there exists x0 ∈ R such that ã(x0) = 1;

(ii) ã is fuzzy convex, that is, ã(tx + (1 − t)y) ≥ min{ã(x), ã(y)}, whenever x, y

∈ R and t ∈ [0, 1];

(iii) ã(x) is upper semicontinuous on R, that is, {x/ã(x) ≥ α} is a closed subset of R

for each α ∈ (0, 1];

(iv) cl{x ∈ R/ã(x) > 0} forms a compact set.

The set of all fuzzy numbers on R is denoted by F (R). For all α ∈ (0, 1], α-level

set ãα of any ã ∈ F (R) is defined as ãα = {x ∈ R/ã(x) ≥ α} . The 0-level set ã0 is

defined as the closure of the set {x ∈ R/ã(x) > 0}. By definition of fuzzy numbers,

we can prove that, for any ã ∈ F (R) and for each α ∈ (0, 1] , ãα is compact convex

subset of R, and we write ãα = [ãL
α , ãU

α ]. ã ∈ F (R) can be recovered from its α-cuts

by a well-known decomposition theorem (ref. [7]), which states that ã = ∪α∈[0,1]α · ãα

where union on the right-hand side is the standard fuzzy union.

Definition 2 [15] According to Zadeh’s extension principle, we have addition and

scalar multiplication in fuzzy number space F (R) by their α-cuts are as follows:

(ã ⊕ b̃)α = [ãL
α + b̃L

α, ãU
α + b̃U

α ]

(λ ⊙ ã)α = [λ · ãL
α, λ · ãU

α ],

where ã, b̃ ∈ F (R), λ ∈ R and α ∈ [0, 1].

Definition 3 [9] Let A, B ⊆ R
n. The Hausdorff metric dH is defined by

dH(A,B) = max{sup
x∈A

inf
y∈B

||x − y||, sup
y∈B

inf
x∈A

||x − y||}.

Then the metric dF on F (R) is defined as

dF (ã, b̃) = sup
0≤α≤1

{dH(ãα, b̃α)},

for all ã, b̃ ∈ F (R). Since ãα and b̃α are closed bounded intervals in R,

dF (ã, b̃) = sup
0≤α≤1

max{|ãL
α − b̃L

α|, |ãU
α − b̃U

α |}.
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We need the following proposition.

Proposition 1 [3] For ã ∈ F (R), we have

(i) ãL
α is bounded left continuous nondecreasing function on (0,1];

(ii) ãU
α is bounded left continuous nonincreasing function on (0,1];

(iii) ãL
α and ãU

α are right continuous at α = 0;

(iv) ãL
α ≤ ãU

α .

Moreover, if the pair of functions ãL
α and ãU

α satisfy the conditions (i)-(iv), then there

exists a unique ã ∈ F (R) such that ãα = [ãL
α, ãU

α ], for each α ∈ [0, 1].

We define here a partial order relation on fuzzy number space.

Definition 4 For ã and b̃ in F (R) and ãα = [ãL
α , ãU

α ] and b̃α = [̃bL
α , b̃U

α ] are two closed

intervals in R, for all α ∈ [0, 1], we define

(i) ã � b̃ if and only if ãL
α ≤ b̃L

α and ãU
α ≤ b̃U

α for all α ∈ [0, 1];

(ii) ã ≺ b̃ if and only if
8

<

:

ãL
α < b̃L

α

ãU
α ≤ b̃U

α

or

8

<

:

ãL
α ≤ b̃L

α

ãU
α < b̃U

α

or

8

<

:

ãL
α < b̃L

α

ãU
α < b̃U

α

for all α ∈ [0, 1].

”�” is partial order relation on fuzzy number space.

Definition 5 [14] The membership function of a triangular fuzzy number ã is defined

by

ζã(r) =

8

>

>

<

>

>

:

(r−aL)
(a−aL)

if aL ≤ r ≤ a

(aU−r)
(aU−a)

if a < r ≤ aU

0 otherwise

which is denoted by ã = (aL, a, aU ). The α-level set of ã is then

ãα = [(1 − α)aL + αa, (1 − α)aU + αa].

3 Differential calculus of fuzzy-valued function

3.1 Continuity of fuzzy-valued function

Definition 6 [8] Let V be a real vector space and F (R) be a fuzzy number space.

Then a function f̃ : V → F (R) is called fuzzy-valued function defined on V.

Corresponding to such a function f̃ and α ∈ [0, 1], we define two real-valued functions

f̃L
α and f̃U

α on V as f̃L
α (x) = (f̃(x))Lα and f̃U

α (x) = (f̃(x))Uα for all x ∈ V .

Definition 7 [4] Let f̃ : R
n → F (R) be a fuzzy-valued function. We say that f̃ is

continuous at c ∈ R
n if for every ǫ > 0, there exists a δ = δ(c, ǫ) > 0 such that

dF (f̃(x), f̃(c)) < ǫ

for all x ∈ R
n with ‖x − c‖ < δ. That is,

limx→cf̃(x) = f̃(c).
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We prove the following proposition.

Proposition 2 Let f̃ : R
n → F (R) be a fuzzy-valued function. If f̃ is continuous at

c ∈ R
n, then functions f̃L

α (x) and f̃U
α (x) are continuous at c, for all α ∈ [0, 1].

Proof The result follows using the definitions of continuity of fuzzy-valued function f̃

and metric on fuzzy numbers. ⊓⊔

3.2 H-differentiability of fuzzy-valued function on R

Let ã and b̃ be two fuzzy numbers. If there exists a fuzzy number c̃ such that c̃⊕ b̃ = ã.

Then c̃ is called Hukuhara difference of ã and b̃ and is denoted by ã ⊖H b̃.

H-differentiability of fuzzy-valued function due to M.L. Puri and D.A. Ralescu [11]

is as follows

Definition 8 Let X be a subset of R. A fuzzy-valued function f̃ : X → F (R) is said

to be H-differentiable at x0 ∈ X if there exists a fuzzy number Df̃(x0) such that the

limits (with respect to metric dF )

lim
h→0+

1

h
⊙ [f̃(x0 + h) ⊖H f̃(x0)], and lim

h→0+

1

h
⊙ [f̃(x0) ⊖H f̃(x0 − h)]

both exist and are equal to Df̃(x0). In this case, Df̃(x0) is called the H-derivative of

f̃ at x0. If f̃ is H-differentiable at any x ∈ X, we call f̃ is H-differentiable over X.

Remark 1 Many fuzzy-valued functions are H-differentaible for which Hukuhara dif-

ferences f̃(x0 +h)⊖H f̃(x0) and f̃(x0)⊖H f̃(x0−h) both exist. The following example

illustrates the fact.

Example 1 Given in [11], let f̃ : (0, 2π) → F (R) be defined on level sets by

[f̃(x)]α = (1 − α)(2 + sin(x))[−1, 1],

for α ∈ [0, 1]. At x0 = π/2, H-difference does not exist. Therefore, function is not

H-differentiable at x0 = π/2.

Now we prove following proposition regarding differentiability of f̃L
α and f̃U

α .

Proposition 3 Let X be a subset of R. If a fuzzy-valued function f̃ : X → F (R) is

H-differentiable at x0 with derivative Df̃(x0), then f̃L
α (x) and f̃U

α (x) are differentiable

at x0, for all α ∈ [0, 1]. Moreover, we have (Df̃)α(x0) = [D(f̃L
α )(x0), D(f̃U

α )(x0)].

Proof The result follows from definitions of H-differentiability of fuzzy-valued function

and metric on fuzzy number space. ⊓⊔
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3.3 H-differentiability of fuzzy-valued function on R
n

Definition 9 [10] Let f̃ be a fuzzy-valued function defined on an open subset X of R
n

and let x0 = (x0
1, ..., x0

n) ∈ X be fixed.

We say that f̃ has the ith partial H-derivative Dif̃(x0) at x0 if the fuzzy-valued func-

tion g̃(xi) = f̃(x0
1, .., x

0
i−1, xi, x

0
i+1, .., x0

n) is H-differentiable at x0
i with H-derivative

Dif̃(x0). We also write Dif̃(x0) as (∂f̃/∂xi)(x
0).

Definition 10 [10] We say that f̃ is H-differentiable at x0 if one of the partial H-

derivatives ∂f̃/∂x1, ..., ∂f̃/∂xn exists at x0 and the remaining n-1 partial H-derivatives

exist on some neighborhoods of x0 and are continuous at x0 (in the sense of fuzzy-

valued function).

The gradient of f̃ at x0 is denoted by

∇f̃(x0) = (D1f̃(x0), ..., Dnf̃(x0)),

and it defines a fuzzy-valued function from X to Fn(R) = F (R)× ....×F (R) (n times),

where each Dif̃(x0) is a fuzzy number for i = 1,...,n. The α-level set of ∇f̃(x0) is

defined and denoted by

(∇f̃(x0))α = ((D1f̃(x0))α, ..., (Dnf̃(x0))α),

where

(Dif̃(x0))α = [Dif̃
L
α (x0), Dif̃

U
α (x0)],

i = 1,...,n.

We say that f̃ is H-differentiable on X if it is H-differentiable at every x0 ∈ X.

Proposition 4 Let X be an open subset of R
n. If a fuzzy-valued function f̃ : X →

F (R) is H-differentiable on X. Then f̃L
α and f̃U

α are also differentiable on X, for all

α ∈ [0, 1]. Moreover, for each x ∈ X, (Dif̃(x))α = [Dif̃
L
α (x),Dif̃

U
α (x)], i = 1,...,n.

Proof The result follows from Propositions 2 and 3. ⊓⊔

Definition 11 We say that f̃ is continuously H-differentiable at x0 if all of the partial

H-derivatives ∂f̃/∂xi, i = 1,..,n, exist on some neighborhoods of x0 and are continuous

at x0 (in the sense of fuzzy-valued function).

We say that f̃ is continuously H-differentiable on X if it is continuously H-differentiable

at every x0 ∈ X.

Proposition 5 Let f̃ : X → F (R) is continuously H-differentiable on X. Then f̃L
α

and f̃U
α are also continuously differentiable on X, for all α ∈ [0, 1].

Proof Followed by Propositions 2 and 4. ⊓⊔

Now we define twice continuously H-differentiable fuzzy-valued function.
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Definition 12 Let f̃ : X → F (R), X ⊂ R
n be a fuzzy-valued function. Suppose now

that there is x0 ∈ X such that gradient of f̃ , ∇f̃ , is itself H-differentiable at x0, that is,

for each i, the function Dif̃ : X → F (R) is H-differentiable at x0. Denote the H-partial

derivative of Dif̃ in the direction of ēj at x0 by

D2
ij f̃ or

∂2f̃(x0)

∂xi∂xj
, if i 6= j,

and

D2
iif̃ or

∂2f̃(x0)

∂x2
i

, if i = j.

Then we say that f̃ is twice H-differentiable at x0, with second H-derivative ∇2f̃(x0)

which is denoted by

∇2f̃(x0) =

0

B

B

@

∂2f̃(x0)
∂x2

1

...
∂2f̃(x0)
∂x1∂xn

... ... ...
∂2f̃(x0)
∂xn∂x1

...
∂2f̃(x0)

∂x2
n

1

C

C

A

where
∂2f̃(x0)
∂xi∂xj

∈ F (R), i,j = 1,...,n.

If f̃ is twice H-differentiable at each x0 in X, we say that f̃ is twice H-differentiable

on X, and if for each i, j = 1,...,n, the cross-partial derivative ∂2f̃
∂xi∂xj

is continuous

function from X to F (R), we say that f̃ is twice continuously H-differentiable on X.

The α-level set of ∇2f̃(x0) is defined and denoted in matrix notation as

(∇2f̃(x0))α = ((D2
ij f̃(x0))α)

i,j = 1,...,n and α ∈ [0, 1], where (D2
ij f̃(x0))α denotes α-cut of (D2

ij f̃(x0)).

Proposition 6 Let f̃ : X ⊆ R
n → F (R) is differentiable with derivative ∇f̃ on X

and let each Dif̃ : X → F (R), i = 1,...,n, is also differentiable at x0 with derivative

D2
ij f̃(x0), i , j = 1,...,n. Then Dif̃

L
α and Dif̃

U
α are also differentiable at x0, for all

α ∈ [0, 1]. Also, we have (D2
ij f̃(x0))α = [D2

ij(f̃
L
α )(x0), D2

ij(f̃
U
α )(x0)], i,j = 1,...,n.

Proof Follows by Proposition 5.

In order to define the Kuhn-Tucker like optimality conditions for nonlinear fuzzy

optimization problems, we need to provide some properties of fuzzy-valued functions.

For that first we state here following two Propositions from Real Analysis.

Proposition 7 [13] Let φ be a real-valued function of two variables defined on I×[a,b],

where I is an interval in R. Suppose that the following conditions are satisfied:

(i) For every x ∈ I, the real-valued function h(y) = φ(x, y) is Riemann integrable on

[a,b]. In this case, we write f(x) =

Z b

a

φ(x, y) dy;

(ii) Let x0 ∈ int(I), the interior of I. For every ǫ > 0, there exists a δ > 0 such that
˛

˛

˛

˛

∂φ

∂x
(x, y) − ∂φ

∂x
(x0, y)

˛

˛

˛

˛

< ǫ

for all y ∈ [a, b] and all x ∈ (x0 − δ, x0 + δ).
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Then ∂φ
∂x

(x0, y) is Riemann integrable on [a,b], f
′

(x0) exists, and

f
′

(x0) =

Z b

a

∂φ

∂x
(x0, y) dy.

Proposition 8 [2] Every function monotonic on an interval is Riemann integrable

there.

Let f̃ : X → F (R) be a fuzzy-valued function defined on X subset of R
n. Then

for each α ∈ [0, 1], f̃L
α and f̃U

α are real-valued functions defined on X. For any fixed

x0 ∈ X, we have the corresponding real-valued functions f̃L
α (x0) and f̃U

α (x0) defined

on α ∈[0,1]. By Proposition 1 and 8, we can easily say that f̃L
α (x0) and f̃U

α (x0) are

riemann integrable. So, we define new functions FL and FU as follows

FL(x) =

Z 1

0
f̃L
α (x)dα and FU (x) =

Z 1

0
f̃U
α (x)dα (3.1)

for every x ∈ X. Then we have following useful proposition.

Proposition 9 [10] Let f̃ be a fuzzy-valued function defined on an open subset X of

R
n. If f̃ is continuously H-differentiable on some neighborhood of x0. Then the real-

valued functions FL and FU defined as above are continuously differentiable at x0

and

∂FL

∂xi
(x0) =

Z 1

0

∂f̃L
α

∂xi
(x0) dα and

∂FU

∂xi
(x0) =

Z 1

0

∂f̃U
α

∂xi
(x0) dα

for all i=1,..,n.

Proof We need to show that the partial derivatives ∂F L

∂xi
and ∂F U

∂xi
exist on some neigh-

borhood of x0 and are continuous at x0 for all i =1,..,n. Since f̃ is continuously H-

differentiable on some neighborhood of x0. By Proposition 5, f̃L
α and f̃U

α are also

continuously differentiable real-valued functions at x0 for all α ∈ [0, 1]. Therefore,

Proposition 8 say that

∂FL

∂xi
(x0) =

Z 1

0

∂f̃L
α

∂xi
(x0) dα and

∂FU

∂xi
(x0) =

Z 1

0

∂f̃U
α

∂xi
(x0) dα (3.2)

for all i=1,..,n. Since ∂fL

∂xi
is continuous at x0, that is, for every ǫ > 0 there exists a

δ > 0 such that

||x − x0|| < δ implies

˛

˛

˛

˛

˛

∂f̃L
α

∂xi
(x) − ∂f̃L

α

∂xi
(x0)

˛

˛

˛

˛

˛

< ǫ for all α ∈ [0, 1]

From (3.2), we have, if ||x − x0|| < δ then
˛

˛

˛

˛

˛

∂FL

∂xi
(x0) − ∂FL

∂xi
(x)

˛

˛

˛

˛

˛

=

˛

˛

˛

˛

˛

Z 1

0
[
∂f̃L

α

∂xi
(x0) − ∂f̃U

α

∂xi
(x)] dα

˛

˛

˛

˛

˛

≤
Z 1

0

˛

˛

˛

˛

˛

∂f̃L
α

∂xi
(x0) − ∂f̃U

α

∂xi
(x)

˛

˛

˛

˛

˛

dα < ǫ,

for all i =1,...,n. Therefore, ∂F L

∂xi
is contiuous for all i = 1,...,n. Similarly we can discuss

the case of ∂F U

∂xi
. Hence complete the proof. ⊓⊔
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4 Neccesary and sufficient optimality conditions for unconstrained fuzzy

optimization problem

4.1 Unconstrained Fuzzy Optimization Problem

Let T ⊆ R
n be an open subset of R

n and f̃ be fuzzy-valued function defined on T.

Consider the following nonlinear fuzzy optimization problem

(FOP1) Minimize f̃(x) = f̃(x1, .., xn)

Subject to x ∈ T

We define here nondominated solutions of (FOP1).

Definition 13 Let T is an open subset of R
n.

(i) A point x0 ∈ T is a locally nondominated solution of (FOP1) if there exists no

x1( 6= x0) ∈ Nǫ(x
0)∩T such that f̃(x1) ≺ f̃(x0), Nǫ(x

0) is a ǫ-neighborhood of x0.

(ii) A point x0 ∈ T is a nondominated solution of (FOP1) if there exists no x1( 6= x0) ∈
T such that f̃(x1) ≺ f̃(x0).

(iii) A point x0 ∈ T is a locally weak nondominated solution of (FOP1) if there exists

no x1( 6= x0) ∈ Nǫ(x
0) ∩ T such that f̃(x1) � f̃(x0).

(iv) A point x0 ∈ T is a weak nondominated solution of (FOP1) if there exists no

x1( 6= x0) ∈ T such that f̃(x1) � f̃(x0).

4.2 Neccessary and sufficient optimality conditions

The first and second order neccessary and sufficient optimality conditions for real

unconstrained optimization problem, given in [5], are as follows.

Theorem 1 Let T is an open subset of R
n.

(i) (FONC) Let f continuously differentiable function on T . If x∗ is a local minimizer

of f over T , then ∇f(x∗) = 0.

(ii) (SONC) Let f twice continuously differentiable function on T . If x∗ is a local

minimizer of f over T , then ∇2f(x∗) is positive semidefinite.

(iii) (SOSC) Let f twice continuously differentiable function on T . Suppose that

1. ∇f(x∗) = 0 and

2. ∇2f(x∗) is positive definite.

Then x∗ is a strict local minimizer of f .

We prove here necessary and sufficient optimality conditions for obtaining nondomi-

nated solution of (FOP1). For that first we prove the following proposition.

Proposition 10 If x0 is a locally nondominated solution of (FOP1), then x0 is also

a local minimum of real-valued functions f̃L
α (x) and f̃U

α (x) for all α ∈ [0, 1].

Proof We prove this result by contradiction. Assume that x0 is not a local minimum

of f̃L
α or f̃U

α for at least one α ∈ [0, 1]. Without loss of generality, suppose that x0 is

not a local minimum of f̃L
α for α0 ∈ [0, 1]. Therefore, there exists x1 ∈ Nǫ(x

0)∩T such

that
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f̃L
α0

(x1) < f̃L
α0

(x0) (4.1)

Since x0 is a locally nondominated solution of (FOP1), there exists no x̄ ∈ Nǫ(x
0)∩

T such that

8

<

:

f̃L
α (x̄) < f̃L

α (x0)

f̃U
α (x̄) ≤ f̃U

α (x0)
or

8

<

:

f̃L
α (x̄) ≤ f̃L

α (x0)

f̃U
α (x̄) < f̃U

α (x0)
or

8

<

:

f̃L
α (x̄) < f̃L

α (x0)

f̃U
α (x̄) < f̃U

α (x0)

for all α ∈ [0, 1]. This gives contradiction to inequality (4.1). Therefore x0 is also a

minimum of real-valued functions f̃L
α (x) and f̃U

α (x) for all α ∈ [0, 1]. ⊓⊔

Now we prove the first-order necessary condition.

Theorem 2 Suppose x0 ∈ T is a locally nondominated solution of (FOP1). Suppose

also that f̃ is conituously H-differentiable function on T . Then

Z 1

0
∇f̃L

α (x0)dα +

Z 1

0
∇f̃U

α (x0)dα = 0

Proof The theorem can prove easily using Proposition 10 and Theorem 1 (i). ⊓⊔

Next, we prove first-order sufficient condition.

Theorem 3 Let f̃ is twice-contiuously H-differentiable fuzzy-valued function defined

on T ⊆ R
n. If x0 is a locally nondominated solution of (FOP1) then ∇2F (x0) is

positive semidefinite matrix.

Here

∇2F (x0) =

Z 1

0
∇2f̃L

α (x0)dα +

Z 1

0
∇2f̃U

α (x0)dα

Proof Since f̃ twice-contiuously H-differentiable fuzzy-valued function on T . By Propo-

sition 2 and 6, f̃L
α and f̃U

α are also twice-contiuously H-differentiable functions on R
n.

Also, by Proposition 10, we say that f̃L
α and f̃U

α has local minimum at x0. Therefore by

second order neccessary condition for real unconstrained optimization stated in Theo-

rem 1 (ii), ∇2f̃L
α (x0) and ∇2f̃U

α (x0) are positive semidefinite, for α ∈ [0, 1].

That is, xT · ∇2f̃L
α (x0) · x ≥ 0 and xT · ∇2f̃U

α (x0) · x ≥ 0 for all x ∈ T , x 6= 0 and

α ∈ [0, 1], where xT is transpose of x.

Therefore,

xT ·
Z 1

0
∇2f̃L

α (x0) · x ≥ 0

and

xT ·
Z 1

0
∇2f̃U

α (x0) · x ≥ 0

Adding these inequalities, we get

xT · ∇2F (x0) · x ≥ 0

for all x ∈ T , x 6= 0. Therefore, ∇2F (x0) is positive semidefinite. ⊓⊔
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Now, we prove second-order sufficient condition.

Theorem 4 Let f̃ is twice contiuously H-differentiable function on T ⊆ R
n. Suppose

that

1. ∇F (x0)

2. ∇2F (x0) is positive definite.

Then, x0 is locally weak nondominated solution of (FOP1).

Proof We prove this result using contradiction. Suppose x0 ∈ T is not a locally weak

nondominated solution of (FOP1). Then, there exists x1 ∈ Nǫ(x
0) ∩ T such that

f̃(x1) ≺ f̃(x0). That is, there exists x1 ∈ Nǫ(x
0) ∩ T such that

8

<

:

f̃L
α (x1) < f̃L

α (x0)

f̃U
α (x1) ≤ f̃U

α (x0)
or

8

<

:

f̃L
α (x1) ≤ f̃L

α (x0)

f̃U
α (x1) < f̃U

α (x0)
or

8

<

:

f̃L
α (x1) < f̃L

α (x0)

f̃U
α (x1) < f̃U

α (x0)
for all α ∈ [0, 1]. Therefore, we have

F (x1) < F (x0), (4.2)

where

F (x) =

Z 1

0
f̃L
α (x)dα +

Z 1

0
f̃U
α (x)dα.

As f̃ is twice continuously H-differentaible function, F(x) is also. Using assumption 2

and Rayleigh’s inequality (refer [5]), it follows that if d 6= 0, then

0 < λmin(F (x0)‖d‖2 ≤ dT · F (x0) · d.

By Taylor’s theorem and assumption 1,

F (x0 + d) − F (x0) =
1

2
dT · ∇2F (x0) · d + O(‖d‖2)

≥ λmin(∇2F (x0))

2
‖d‖2 + O(‖d‖2).

Hence, for all d such that ‖d‖ is sufficiently small,

F (x0 + d) > F (x0)

This gives contradiction to inequality (4.2). Hence proved the result. ⊓⊔

We give one example to illustrate the above results.

Example 2 Let f̃ : R
2 → F (R) be defined by f̃(x1, x2) = (0, 2, 4)⊙x2

1 ⊕ (0, 2, 4)⊙x2
2⊙

(1, 3, 5), where (0, 2, 4) and (1, 3, 5) are triangular fuzzy numbers.

By first order neccessary condition: ∇F (x) = 0.

Here, f̃L
α (x1, x2) = 2αx2

1 + 2αx2
2 + (1 + 2α) and

f̃U
α (x1, x2) = (4 − 2α)x2

1 + (4 − 2α)x2
2 + (5 − 2α). Therefore,

∇fL
α (x1, x2) =

„

4x1α

4x2α

«
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and

∇fU
α (x1, x2) =

„

2(4 − 2α)x1

2(4 − 2α)x2

«

Therefore,

∇F (x1, x2) =

„

14x1

14x2

«

This implies , x0 = (x1, x2) = (0, 0).

Now to verify second order necessary and sufficient conditions, we find ∇2F (x):

∇2f̃L
α (x) =

„

4α 0

0 4α

«

and

∇2f̃U
α (x) =

„

2(4 − 2α) 0

0 2(4 − 2α)

«

Therefore,

∇2F (x) =

„

14 0

0 14

«

which is positive definite. Therefore, by neccessary and sufficient conditions, x0 = (0, 0)

is a nondominated solution of given problem.

5 Neccesary and sufficient optimality conditions for constrained fuzzy

optimization problem

5.1 Constrained Fuzzy Optimization Problem

Let T ⊆ R
n be an open subset of R

n and f̃ , g̃j , for j = 1,...,m be fuzzy-valued functions

defined on T. Consider the following nonlinear fuzzy optimization problem

(FOP2) Minimize f̃(x) = f̃(x1, .., xn)

Subject to g̃j(x) � 0̃, j = 1, .., m,

where 0̃ is a fuzzy number defined as 0̃(r) = 1 if r = 0 and 0̃(r) = 0 if r 6= 0 and its

level set is 0̃α = {0} for α ∈ [0, 1].

Definition 14 Let x0 ∈ X = {x ∈ T : g̃j(x) � 0̃, j = 1, .., m}. We say that x0

is a nondominated solution of (FOP2) if there exists no x1( 6= x0) ∈ X such that

f̃(x1) ≺ f̃(x0). That is, x0 is a nondominated solution of (FOP2) if there exists no

x1( 6= x0) ∈ X such that

8

<

:

f̃L
α (x1) < f̃L

α (x0)

f̃U
α (x1) ≤ f̃U

α (x0)
or

8

<

:

f̃L
α (x1) ≤ f̃L

α (x0)

f̃U
α (x1) < f̃U

α (x0)
or

8

<

:

f̃L
α (x1) < f̃L

α (x0)

f̃U
α (x1) < f̃U

α (x0)

for all α ∈ [0, 1].
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5.2 Necessary and Sufficient Optimality Conditions

Let f and gj , j = 1, .., m, be real-valued functions defined on T ⊂ R
n. Then we consider

the following optimization problem

(P ) Minimize f(x) = f(x1, .., xn)

Subject to gj(x) ≤ 0, j = 1, .., m.

The well-known Kuhn-Tucker optimality conditions for problem (P) by S. Ran-

garajan in [12] is stated as follows:

Theorem 5 Let f be a convex, continuously differentiable function mapping T into R,

where T ⊂ R
n is open and convex. For j =1,..m, the constraint functions gj : T → R

are convex, continuously differentiable functions. Suppose there is some x ∈ T such

that gj(x) < 0, j =1,..,m.

Then x0 is an optimal solution of propositionblem (P) over the feasible set {x ∈ T :

gj(x) ≤ 0, j = 1, .., m} if and only if there exist multipliers 0 ≤ µj ∈ R, j = 1,..,m,

such that the Kuhn-Tucker first order conditions hold:

(KT-1) ∇f(x0) +
Pm

j=1 µj∇gj(x
0) = 0;

(KT-2) µj · gj(x
0) = 0 for all j = 1,..,m.

First we introduce the concept of convexity for fuzzy-valued functions.

Definition 15 Let T be a convex subset of R
n and f̃ be a fuzzy-valued function

defined on T. We say that f̃ is convex at x0 if

f̃(λx0 + (1 − λ)x) � (λ ⊙ f̃(x0) ⊕ ((1 − λ) ⊙ f̃(x))

for each λ ∈ (0, 1) and x ∈ T .

Proposition 11 f̃ : T → F (R) is convex at x0 if and only if f̃L
α and f̃U

α are convex

at x0, for all α ∈ [0, 1].

Proof The result can prove easily using the concepts of arithmetic operations and

partial order relation of fuzzy numbers. ⊓⊔

We now present the Kuhn-Tucker like optimality conditions for (FOP2).

Theorem 6 Let the fuzzy-valued objective function f̃ : T → F (R) is convex and con-

tinuously H-differentiable, where T ⊂ R
n is open and convex. For j = 1,..,m, the fuzzy-

valued constraint functions g̃j : T → F (R) are convex and continuously H-differentiable.

Let X = {x ∈ T ⊂ R
n : g̃j(x) � 0̃, j = 1, .., m} be a feasible set of problem (FOP) and

let x0 ∈ X. Suppose there is some x ∈ T such that g̃j(x) ≺ 0̃, j =1,..,m.

Then x0 is a nondominated solution of problem (FOP2) over X if and only if there exist

multipliers 0 ≤ µj ∈ R, j = 1,..,m, such that the Kuhn-Tucker first order conditions

hold:

(FKT-1)

Z 1

0
∇f̃L

α (x0) dα +

Z 1

0
∇f̃U

α (x0) dα +

m
X

j=1

µj∇g̃U
j0(x0) = 0;

(FKT-2) µj · g̃U
j0(x

0) = 0 for all j = 1,..,m.
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Proof Necessary. Define a new function,

F (x) =

Z 1

0
f̃L
α (x)dα +

Z 1

0
f̃U
α (x)dα. (5.1)

Since f̃ is convex and continuously H-differentiable function, by Propositions 5 and 11,

we say that F(x) is convex and continuously differentiable real-valued function on T.

Since x0 is a nondominated solution of (FOP2). Then there exists no (x1 6= x0) ∈ X

such that

8

<

:

f̃L
α (x1) < f̃L

α (x0)

f̃U
α (x0) ≤ f̃U

α (x0)
or

8

<

:

f̃L
α (x1) ≤ f̃L

α (x0)

f̃U
α (x1) < f̃U

α (x0)
or

8

<

:

f̃L
α (x1) < f̃L

α (x0)

f̃U
α (x1) < f̃U

α (x0)

for all α ∈ [0, 1].

That is, there exists no x1( 6= x0) ∈ X such that

F (x1) < F (x0)

Therefore,

F (x0) ≤ F (x1)

Since g̃j are convex and continuously H-differentiable functions for j = 1,..,m implies

g̃L
jα and g̃U

jα are real-valued convex and continuously differentiable functions for all

α ∈ [0, 1] and j =1,..,m.

By definition of partial ordering and Proposition 1, we have

X = {x ∈ T ⊂ R
n : g̃j(x) � 0̃, j = 1, ..., m}

= {x ∈ T ⊂ R
n : g̃L

jα(x) ≤ 0 and g̃U
jα(x) ≤ 0, j = 1, ..., m}

= {x ∈ T ⊂ R
n : g̃U

jα(x) ≤ 0, j = 1, ..., m}
= {x ∈ T ⊂ R

n : g̃U
j0(x) ≤ 0, j = 1, ..., m}

Therefore, x0 ∈ X = {x ∈ T ⊂ R
n : g̃U

j0(x) ≤ 0, j = 1, .., m} and there is some

x ∈ T such that g̃U
j0(x) < 0, j =1,..,m. So our problem becomes an optimization problem

with real objective function F(x) subject to real constraints.

Therefore, by Theorem 5, there exist multipliers 0 ≤ µj ∈ R, j = 1,..,m, such that the

following kuhn-Tucker first order conditions hold:

(KT-1) ∇F (x0) +
Pm

j=1 µj∇g̃U
j0(x

0) = 0;

(KT-2) µj · g̃U
j0(x0) = 0 for all j = 1,..,m.

But F (x) =

Z 1

0
f̃L
α (x)dα +

Z 1

0
f̃U
α (x)dα. We obtain the kuhn-Tucker conditions for

problem (FOP2) as follows

(FKT-1)

Z 1

0
∇f̃L

α (x0) dα +

Z 1

0
∇f̃U

α (x0) dα +
m

X

j=1

µj∇g̃U
j0(x

0) = 0;

(FKT-2) µj · g̃U
j0(x0) = 0 for all j = 1,..,m.
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Sufficient.We are going to prove this part by contradiction. Suppose that x0 not a

nondominated solution. Then there exists a x1( 6= x0) ∈ X such that f̃(x1) ≺ f̃(x0).

Therefore, we have

f̃L
α (x1) + f̃U

α (x1) < f̃L
α (x0) + f̃U

α (x0)

for all α ∈ [0, 1]. From (5.1), we obtain

F (x1) < F (x0) (5.2)

Since F is convex and continuously differentiable function. Furthermore, x0 ∈ X =

{x ∈ T ⊂ R
n : g̃U

j0(x) ≤ 0, j = 1, .., m} , by conditions (FKT-1) and (FKT-2) of this

theorem, we obtain the following new conditions:

(KT-1) ∇F (x0) +
Pm

j=1 µj∇g̃U
j0(x

0) = 0;

(KT-2) µj · g̃U
j0(x0) = 0 for all j = 1,..,m.

Using Theorem 5, we say that x0 is an optimal solution of real-objective function F

with real constraints g̃U
j0(x) ≤ 0, for j = 1, .., m. i.e., F (x0) ≤ F (x1), which contradicts

to (5.2). Hence the proof. ⊓⊔

We consider here first fuzzy optimization problem having fuzzy-valued objective

function and real constraints.

Example 3

Minimize f̃(x1, x2) = (ã ⊙ x2
1) ⊕ (b̃ ⊙ x2

2)

subject to g(x1, x2) = (x1 − 2)2 + (x2 − 2)2 ≤ 1,

where ã = (1, 2, 3) and b̃ = (0, 1, 2) are triangular fuzzy numbers defined on R as

ã(r) =

8

>

>

>

<

>

>

>

:

(r − 1), if 1 ≤ r ≤ 2,

(3 − r), if 2 < r ≤ 3,

0 otherwise

b̃(r) =

8

>

>

>

<

>

>

>

:

r, if 0 ≤ r ≤ 1,

2 − r, if 1 < r ≤ 2,

0 otherwise
Using definition 2, we obtain

f̃L
α (x1, x2) = (1 + α)x2

1 + αx2
2 and f̃U

α (x1, x2) = (3 − α)x2
1 + (2 − α)x2

2

for α ∈ [0, 1].

We obtain

∇f̃L
α (x1, x2) =

„

2x1(α + 1)

2x2α

«

, ∇f̃U
α (x1, x2) =

„

2x1(3 − α)

2x2(2 − α)

«

and

∇g(x1, x2) =

„

2(x1 − 2)

2(x2 − 2)

«

Therefore, we have

Z 1

0
∇f̃L

α (x1, x2) dα =

„

3x1

x2

«

,

Z 1

0
∇f̃U

α (x1, x2) dα =

„

5x1

3x2

«

.

From Theorem 6, we have the following Kuhn-Tucker conditions
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(FKT-1) 8x1 + 2µ(x1 − 2) = 0, 4x2 + 2µ(x2 − 2) = 0,

(FKT-2) µ((x1 − 2)2 + (x2 − 2)2 − 1) = 0.

Solving these equations, we get the solution (x1, x2) = (6/5, 3/2) and µ = 6. By The-

orem 6, we say that (x∗
1, x∗

2) = (6/5, 3/2) is nondominated solution for given problem

. Also the minimum value of objective function is f̃min = (1.44, 5.13, 8.82) and we can

find its defuzzified value 5.13 by using center of area method (ref. [7]).

Now we solve the same fuzzy optimization problem having fuzzy-valued objective

function with fuzzy constraints.

Example 4

Minimize f̃(x1, x2) = (ã ⊙ x2
1) ⊕ (b̃ ⊙ x2

2)

subject to g̃(x1, x2) = (b̃ ⊙ (x1 − 2)2) ⊕ (b̃ ⊙ (x2 − 2)2) � c̃,

where ã = (1, 2, 3), b̃ = (0, 1, 2) and c̃ = (0, 2, 4) are triangular fuzzy numbers defined

on R as

ã(r) =

8

>

>

>

<

>

>

>

:

(r − 1), if 1 ≤ r ≤ 2,

(3 − r), if 2 < r ≤ 3,

0 otherwise

b̃(r) =

8

>

>

>

<

>

>

>

:

r, if 0 ≤ r ≤ 1,

2 − r, if 1 < r ≤ 2,

0 otherwise

c̃(r) =

8

>

>

>

<

>

>

>

:

r/2, if 0 ≤ r ≤ 2,

(4 − r)/2, if 2 < r ≤ 4,

0 otherwise
Using definition 2, we obtain

f̃L
α (x1, x2) = (1 + α)x2

1 + αx2
2 and f̃U

α (x1, x2) = (3 − α)x2
1 + (2 − α)x2

2

for α ∈ [0, 1].

Moreover, g̃U
α (x1, x2) = (2 − α)(x1 − 2)2 + (2 − α)(x2 − 2)2 ≤ (4 − 2α)

for α ∈ [0, 1].

Therefore, g̃U
0 (x1, x2) = (x1 − 2)2 + (x2 − 2)2 ≤ 2.

Now we obtain

∇f̃L
α (x1, x2) =

„

2x1(α + 1)

2x2α

«

, ∇f̃U
α (x1, x2) =

„

2x1(3 − α)

2x2(2 − α)

«

and

∇g(x1, x2) =

„

2(x1 − 2)

2(x2 − 2)

«

Therefore, we have

Z 1

0
∇f̃L

α (x1, x2) dα =

„

3x1

x2

«

,

Z 1

0
∇f̃U

α (x1, x2) dα =

„

5x1

3x2

«

.

From Theorem 6, we have the following Kuhn-Tucker conditions

(FKT-1) 8x1 + 2µ(x1 − 2) = 0, 4x2 + 2µ(x2 − 2) = 0,

(FKT-2) µ((x1 − 2)2 + (x2 − 2)2 − 2) = 0.
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Solving these equations, we get the solution (x1, x2) = ((−6+2
√

41)/(1+
√

41), (−6+

2
√

41)/(−1 +
√

41)) and µ = −3 +
√

41. By Theorem 6, we say that (x∗
1, x∗

2) = ((−6 +

2
√

41)/(1+
√

41), (−6+2
√

41)/(−1+
√

41)) is nondominated solution for given problem

. Also the minimum value of objective function is f̃min = (0.8453, 3.2773, 5.7094) and

we can find its defuzzified value 3.2773 by using center of area method.

Remark 2 By comparing the defuzzified value of minimum objective functions in ex-

ample 3 and 4, we observe that there is significant effect on minimum value of the fuzzy-

valued objective function if consider fuzzy optimization problem with fuzzy constraints.

Moreover, if we consider the fuzzy optimization problem having fuzzy constraints then

we can not apply Theorem 6.2 from [10] to find the nondominated solution. In that

case, our result is quite useful to get the solution.

6 Conclusion

Using partial order relation on fuzzy number space, the necessary and sufficient Kuhn-

Tucker like optimality condtions for nonlinear fuzzy optimization problem have been

derived in this paper. We have used hukuhara differentiability and convexity of fuzzy-

valued function for proving the same. We have also provided an example to illustrate

the possible applications in this subject.
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