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NECESSARY AND SUFFICIENT OPTIMALITY

CONDITIONS FOR NONLINEAR UNCONSTRAINED

FUZZY OPTIMIZATION PROBLEM

V. D. PATHAK AND U. M. PIRZADA

Abstract. Nonlinear unconstrained fuzzy optimization problem is

considered in this paper. Using the concept of convexity and Hukuhara

differentiability of fuzzy-valued functions, the necessary and sufficient

optimality conditions are derived.

1. Introduction

Crisp optimization techniques have been successfully applied for years. In

real process optimization, there exist different types of uncertainties in the

system. Zimmermann [17] pointed out various kinds of uncertainties that can

be categorized as stochastic uncertainty or fuzziness. The optimization under

a fuzzy environment or which involve fuzziness is called fuzzy optimization.

Bellman and Zadeh in 1970 [2] proposed the concept of fuzzy decision and

the decision model under fuzzy environments. After that, various approaches

to fuzzy linear and nonlinear optimization, have been developed over the years

by researchers.

In this paper, we establish first and second order necessary and sufficient

optimality conditions for obtaining the non-dominated solution of a nonlinear

unconstrained fuzzy optimization problem.

In Section 2, we cite some of the basic definitions regarding fuzzy numbers.

In Section 3, we consider the differential calculus of fuzzy-valued functions

defined on R and R
n using Hukuhara differentiability of fuzzy-valued functions.

In Section 4, we propose the first and second order optimality conditions to find

a non-dominated solution of a unconstrained fuzzy optimization problem. At

last we conclude in Section 5.
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2. Preliminaries

Definition 2.1. [7] Let R be the set of real numbers and ã : R → [0, 1] be a

fuzzy set. We say that ã is a fuzzy number if it satisfies the following properties:

(i) ã is normal, that is, there exists x0 ∈ R such that ã(x0) = 1;

(ii) ã is fuzzy convex, that is, ã(tx + (1 − t)y) ≥ min{ã(x), ã(y)}, whenever

x, y ∈ R and t ∈ [0, 1];

(iii) ã(x) is upper semi-continuous on R, that is, {x/ã(x) ≥ α} is a closed

subset of R for each α ∈ (0, 1];

(iv) cl{x ∈ R/(a)(x) > 0} forms a compact set, where, ‘cl’ denotes the closure.

The set of all fuzzy numbers on R is denoted by F (R). For all α ∈ (0, 1],

α-level set ãα of any ã ∈ F (R) is defined as ãα = {x ∈ R/ã(x) ≥ α}.

The 0-level set ã0 is defined as the closure of the set {x ∈ R/ã(x) > 0}.

By the definition of fuzzy numbers, we can prove that, for any ã ∈ F (R) and

for each α ∈ (0, 1], ãα is compact convex subset of R and we write ãα = [ãLα, ã
U
α ].

ã ∈ F (R) can be recovered from its α-level sets by a well-known decomposition

theorem (ref. [8]), which states that ã = ∪α∈[0,1]α · ãα where union on the

right-hand side is the standard fuzzy union.

Definition 2.2. [13] According to Zadeh’s extension principle, we have addi-

tion and scalar multiplication in fuzzy number space F (R) by their α-level sets

as follows:

(ã⊕ b̃)α = [ãLα + b̃Lα, ã
U
α + b̃Uα ],

(λ⊙ ã)α = [λ · ãLα, λ · ãUα ],

where ã, b̃ ∈ F (R), λ ∈ R and α ∈ [0, 1].

Definition 2.3. [15] Let A,B ⊆ R
n. The Hausdorff metric dH is defined by

dH(A,B) = max{sup
x∈A

inf
y∈B

||x− y||, sup
y∈B

inf
x∈A

||x− y||}.

Then the metric dF on F (R) is defined as

dF (ã, b̃) = sup
0≤α≤1

{dH(ãα, b̃α)},

for all ã, b̃ ∈ F (R). Since ãα and b̃α are closed bounded intervals in R,

dF (ã, b̃) = sup
0≤α≤1

max{|ãLα − b̃Lα|, |ã
U
α − b̃Uα |}.

We need the following proposition.

Proposition 2.1. [5] For ã ∈ F (R), we have
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(i) ãLα is bounded left continuous nondecreasing function on (0,1];

(ii) ãUα is bounded left continuous non-increasing function on (0,1];

(iii) ãLα and ãUα are right continuous at α = 0;

(iv) ãLα ≤ ãUα .

Moreover, if the pair of functions ãLα and ãUα satisfy the conditions (i)-(iv), then

there exists a unique ã ∈ F (R) such that ãα = [ãLα, ã
U
α ], for each α ∈ [0, 1].

We define here a partial order relation on the set of fuzzy numbers called

fuzzy-max order, introduced by Ramı́k and Rimanek [10].

Definition 2.4. For ã and b̃ in F (R) and ãα = [ãLα, ã
U
α ] and b̃α = [b̃Lα, b̃

U
α ] are

two closed intervals in R, for all α ∈ [0, 1], we define

(i) ã � b̃ if and only if ãLα ≤ b̃Lα and ãUα ≤ b̃Uα for all α ∈ [0, 1];

(ii) ã ≺ b̃ if and only if ã � b̃ and there exists an α0 ∈ [0, 1] such that

ãLα0
< b̃Lα0

or ãUα0
< b̃Uα0

.

“�” is a partial order relation on the set of fuzzy numbers.

Now we define comparable fuzzy numbers as follows.

Definition 2.5. For ã , b̃ in F (R), we say that ã and b̃ are comparable if either

ã � b̃ or b̃ � ã.

Definition 2.6. [12] The membership function of a triangular fuzzy number ã

is defined as

µã(r) =















(r−aL)
(a−aL) , if aL ≤ r ≤ a

(aU−r)
(aU−a) , if a < r ≤ aU

0, otherwise

which is denoted by

ã = (aL, a, aU ).

The α-level set of ã is then

ãα = [(1− α)aL + αa, (1− α)aU + αa].

3. Differential calculus of fuzzy-valued function

3.1. Continuity of fuzzy-valued function.

Definition 3.1. [14] Let V be a real vector space and F (R) be a fuzzy number

space. Then a function f̃ : V → F (R) is called a fuzzy-valued function defined

on V .
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Corresponding to such a function f̃ and α ∈ [0, 1], we define two real-valued

functions f̃L
α and f̃U

α on V as f̃L
α (x) = (f̃(x))Lα and f̃U

α (x) = (f̃(x))Uα for all

x ∈ V .

Definition 3.2. [6] Let f̃ : Rn → F (R) be a fuzzy-valued function. We say

that f̃ is continuous at c ∈ R
n if for every ǫ > 0, there exists a δ = δ(c, ǫ) > 0

such that

dF (f̃(x), f̃(c)) < ǫ

for all x ∈ R
n with ‖x− c‖ < δ. That is,

limx→cf̃(x) = f̃(c).

We prove the following proposition.

Proposition 3.1. Let f̃ : R
n → F (R) be a fuzzy-valued function. If f̃ is

continuous at c ∈ R
n, then functions f̃L

α (x) and f̃U
α (x) are continuous at c, for

all α ∈ [0, 1].

Proof: The result follows by using the definitions of continuity of fuzzy-valued

function f̃ and metric on fuzzy numbers.

3.2. H-differentiability of fuzzy-valued function on R.

Definition 3.3. Let ã and b̃ be two fuzzy numbers. If there exists a fuzzy

number c̃ such that c̃⊕ b̃ = ã. Then c̃ is called Hukuhara difference of ã and b̃

and is denoted by ã⊖H b̃.

Hukuhara differentiability (H-differentiability) of a fuzzy-valued function

due to Puri and Ralescu [9] is as follows.

Definition 3.4. Let X be a subset of R. A fuzzy-valued function f̃ : X → F (R)

is said to be H-differentiable at x0 ∈ X if there exists a fuzzy number Df̃(x0)

such that the limits (with respect to metric dF )

lim
h→0+

1

h
⊙ [f̃(x0 + h)⊖H f̃(x0)], and lim

h→0+

1

h
⊙ [f̃(x0)⊖H f̃(x0 − h)]

both exist and are equal to Df̃(x0). In this case, Df̃(x0) is called the H-

derivative of f̃ at x0. If f̃ is H-differentiable at any x ∈ X, we call f̃ is

H-differentiable over X.

We prove following proposition regarding differentiability of f̃L
α and f̃U

α .

Proposition 3.2. Let X be a subset of R. If a fuzzy-valued function

f̃ : X → F (R) is H-differentiable at x0 with H-derivative Df̃(x0), then f̃L
α (x)

and f̃U
α (x) are differentiable at x0, for all α ∈ [0, 1]. Moreover, we have

(Df̃)α(x
0) = [D(f̃L

α )(x
0), D(f̃U

α )(x0)].
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Proof: The result follows from the definitions of H-differentiability of fuzzy-

valued function and metric on fuzzy number space.

3.3. H-differentiability of fuzzy-valued function on R
n.

Definition 3.5. [16] Let f̃ be a fuzzy-valued function defined on an open subset

X of Rn and let x̄0 = (x0
1, . . . , x

0
n) ∈ X be fixed. We say that f̃ has the ith

partial H-derivative Dif̃(x̄
0) at x̄0 if the fuzzy-valued function

g̃(xi) = f̃(x0
1, . . . , x

0
i−1, xi, x

0
i+1, . . . , x

0
n) is H-differentiable at x

0
i with H-derivative

Dif̃(x̄
0). We also write Dif̃(x̄

0) as (∂f̃/∂xi)(x̄
0).

Definition 3.6. [16] We say that f̃ is H-differentiable at x̄0 if one of the

partial H-derivatives ∂f̃/∂x1, . . . , ∂f̃/∂xn exists at x̄0 and the remaining n− 1

partial H-derivatives exist on some neighborhoods of x̄0 and are continuous at

x̄0 (in the sense of fuzzy-valued function).

The gradient of f̃ at x̄0 is denoted by

∇f̃(x̄0) = (D1f̃(x̄
0), . . . , Dnf̃(x̄

0)),

and it defines a fuzzy-valued function from X to Fn(R) = F (R)× · · · × F (R)

(n times), where each Dif̃(x̄
0) is a fuzzy number for i = 1, . . . , n. The α-level

set of ∇f̃(x̄0) is defined and denoted by

(∇f̃(x̄0))α = ((D1f̃(x̄
0))α, . . . , (Dnf̃(x̄

0))α),

where

(Dif̃(x̄
0))α = [Dif̃

L
α (x̄

0), Dif̃
U
α (x̄0)],

i = 1, . . . , n.

We say that f̃ is H-differentiable on X if it is H-differentiable at every

x̄0 ∈ X .

Proposition 3.3. Let X be an open subset of Rn. If a fuzzy-valued function

f̃ : X → F (R) is H-differentiable on X. Then f̃L
α and f̃U

α are also differentiable

on X, for all α ∈ [0, 1]. Moreover, for each x̄ ∈ X,

(Dif̃(x̄))α = [Dif̃
L
α (x̄), Dif̃

U
α (x̄)], i = 1, . . . , n.

Proof: The result follows from Propositions 3.1 and 3.2.

Definition 3.7. We say that f̃ is continuously H-differentiable at x̄0 if all of

the partial H-derivatives ∂f̃/∂xi, i = 1, . . . , n, exist on some neighborhoods of

x̄0 and are continuous at x̄0 (in the sense of fuzzy-valued function). We say that

f̃ is continuously H-differentiable on X if it is continuously H-differentiable at

every x0 ∈ X.
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Proposition 3.4. Let f̃ : X → F (R) be continuously H-differentiable on X.

Then f̃L
α and f̃U

α are also continuously differentiable on X, for all α ∈ [0, 1].

Proof: Follows by Propositions 3.1 and 3.3.

Now we define twice continuously H-differentiable fuzzy-valued function.

Definition 3.8. Let f̃ : X → F (R), X ⊂ R
n be a fuzzy-valued function.

Suppose now that there is x̄0 ∈ X such that gradient of f̃ , ∇f̃ , is itself H-

differentiable at x̄0, that is, for each i, the function Dif̃ : X → F (R) is H-

differentiable at x̄0. Denote the H-partial derivative of Dif̃ in the direction of

ēj at x̄0 by

D2
ij f̃ or

∂2f̃(x̄0)

∂xi∂xj

, if i 6= j,

and

D2
iif̃ or

∂2f̃(x̄0)

∂x2
i

, if i = j.

Then we say that f̃ is twice H-differentiable at x̄0, with second H-derivative

∇2f̃(x̄0) which can be called as the fuzzy Hessian matrix and is denoted by

∇2f̃(x̄0) =









∂2f̃(x̄0)
∂x2

1

. . . ∂2f̃(x̄0)
∂x1∂xn

. . . . . . . . .
∂2f̃(x̄0)
∂xn∂x1

. . . ∂2f̃(x̄0)
∂x2

n









where ∂2f̃(x̄0)
∂xi∂xj

∈ F (R), i, j = 1, . . . , n.

If f̃ is twice H-differentiable at each x̄0 in X, we say that f̃ is twice H-

differentiable on X, and if for each i, j = 1, . . . , n, the cross-partial derivative
∂2f̃

∂xi∂xj
is continuous function from X to F (R), we say that f̃ is twice continu-

ously H-differentiable on X.

Proposition 3.5. Let f̃ : X ⊆ R
n → F (R) be H-differentiable with deriv-

ative ∇f̃ on X and let each Dif̃ : X → F (R), i = 1, . . . , n, be also H-

differentiable at x̄0 with H-derivative D2
ij f̃(x̄

0), i, j = 1, . . . , n. Then Dif̃
L
α

and Dif̃
U
α are also differentiable at x̄0, for all α ∈ [0, 1]. Also, we have

(D2
ij f̃(x̄

0))α = [D2
ij(f̃

L
α )(x̄

0), D2
ij(f̃

U
α )(x̄0)], i, j = 1, . . . , n.

Proof: Follows by Proposition 3.4.

We define definiteness and semi-definiteness of a fuzzy matrix.

Definition 3.9. Let Ã = (ãij), i, j = 1, . . . , n be a fuzzy matrix. That is, all

the elements (ãij) in the fuzzy matrix Ã, are fuzzy numbers defined on R. There

are associated two real matrices called α-level matrices, ÃL
α and ÃU

α , α ∈ [0, 1]

which are given as follows:
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ÃL
α =







(ã11)
L
α . . . (ã1n)

L
α

. . . . . . . . .

(ãn1)
L
α . . . (ãnn)

L
α







and

ÃU
α =







(ã11)
U
α . . . (ã1n)

U
α

. . . . . . . . .

(ãn1)
U
α . . . (ãnn)

U
α






.

Then Ã is said to be

(i) positive definite fuzzy matrix if the α-level matrices ÃL
α and ÃU

α are

positive definite real matrices, for all α ∈ [0, 1],

(ii) positive semidefinite fuzzy matrix if the α-level matrices ÃL
α and ÃU

α

are positive semidefinite real matrices, for all α ∈ [0, 1].

Example 3.1. Consider the fuzzy matrix

Ã =

(

ã 0̃

0̃ ã

)

where ã = (1, 2, 4) and 0̃ = (0, 0, 0) are fuzzy numbers. Then we obtain two

α-level matrices for Ã,

ÃL
α =

(

(1 + α) 0

0 (1 + α)

)

and ÃU
α =

(

(4− 2α) 0

0 (4− 2α)

)

for all α ∈ [0, 1]. Clearly these matrices are positive definite for all α. Therefore,

the given fuzzy matrix Ã is positive definite.

Example 3.2. Now consider the fuzzy matrix

B̃ =

(

ã 0̃

0̃ ã

)

where ã = (0, 2, 4) and 0̃ = (0, 0, 0) are fuzzy numbers. Then we obtain two

α-level matrices for B̃,

B̃L
α =

(

(2α) 0

0 (2α)

)

and B̃U
α =

(

(4− 2α) 0

0 (4− 2α)

)

for all α ∈ [0, 1]. These matrices are positive definite, for all α except α = 0.

For α = 0, the first matrix is positive semidefinite. Therefore, the given fuzzy

matrix B̃ is positive semidefinite.
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4. Necessary and sufficient optimality conditions for

unconstrained fuzzy optimization problem

4.1. Problem and its solution.

Let T ⊆ R
n be an open subset of Rn and f̃ be fuzzy-valued function de-

fined on T . Consider the following nonlinear unconstrained fuzzy optimization

problem (FOP).

Minimize f̃(x) = f̃(x1, .., xn),

subject to x̄ ∈ T.

A locally non-dominated solution of (FOP) is given as follows.

Definition 4.1. Let T be an open subset of Rn. A point x̄0 ∈ T is a locally

non-dominated solution of (FOP) if there exists no x̄1(6= x̄0) ∈ Nǫ(x̄
0)∩T such

that f̃(x̄1) � f̃(x̄0), where Nǫ(x̄
0) is a ǫ-neighborhood of x̄0.

4.2. Necessary and sufficient optimality conditions.

The first and second order necessary and sufficient optimality conditions

for real unconstrained optimization problem, given in [5], are as follows.

Theorem 4.1. Let T be an open subset of Rn.

(i) (FONC) Let f be a continuously differentiable function on T . If x∗ is

a local minimizer of f over T , then ∇f(x∗) = 0.

(ii) (SONC) Let f be a twice continuously differentiable function on T . If

x∗ is a local minimizer of f over T , then ∇2f(x∗) is positive semidef-

inite.

(iii) (SOSC) Let f be a twice continuously differentiable function on T .

Suppose that

(1) ∇f(x∗) = 0 and

(2) ∇2f(x∗) is positive definite.

Then x∗ is a strict local minimizer of f .

We prove here necessary and sufficient optimality conditions for obtaining

the locally non-dominated solution of (FOP). We need the following Theorem

of classical optimization theory given in [1].

Theorem 4.2. [1] Suppose that f̃ : Rn → R is differentiable at x̄. If there

is a vector d̄ such that ∇f(x̄)T · d̄ < 0, then there exists a δ > 0 such that

f(x̄+ λd̄) < f(x̄) for each λ ∈ (0, δ), so that d̄ is a descent direction of f at x̄.

The first order necessary condition is as follows.
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Theorem 4.3. Suppose f̃ : T → F (R) is continuously H-differentiable fuzzy-

valued function, T is an open subset of Rn. If x̄0 ∈ T is a locally non-dominated

solution of (FOP) and for any direction d̄ and for any δ > 0 there exists

λ ∈ (0, δ) such that f̃(x̄0 + λ · d̄) and f̃(x̄0) are comparable, then ∇f̃(x̄0) = 0̃.

Proof: Suppose that

∇f̃(x̄0) 6= 0̃,

then there exists α0 ∈ [0, 1] such that

∇f̃L
α0
(x̄0) 6= 0

or

∇f̃U
α0
(x̄0) 6= 0.

Without loss of generality suppose that

∇f̃L
α0
(x̄0) 6= 0.

Let

d̄ = −∇f̃L
α0
(x̄0).

Then we get

∇f̃L
α0
(x̄0) · d̄ = −‖∇f̃L

α0
(x̄0)‖2 < 0.

By Theorem 4.2, there is a δ > 0 such that

f̃L
α0
(x̄0 + λd̄) < f̃L

α0
(x̄0) (4.1)

for λ ∈ (0, δ). Now by assumption of the theorem,

for any direction d̄ and for any δ > 0 there exists λ ∈ (0, δ) such that f̃(x̄0+λ·d̄)

and f̃(x̄0) are comparable.

Thus, either f̃(x̄0 +λ · d̄) � f̃(x̄0) or f̃(x̄0) � f̃(x̄0 +λ · d̄). But from (4.1),

we must have

f̃(x̄0 + λ · d̄) ≺ f̃(x̄0).

Which contradicts to our assumption that x̄0 is a non-dominated solution.

Therefore,

∇f̃(x̄0) = 0̃.

Remark:

∇f̃(x̄0) = 0̃
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implies

∇f̃L
α (x̄

0) = 0 and ∇f̃U
α (x̄0) = 0

for all α ∈ [0, 1]. This implies
∫ 1

0

∇f̃L
α (x̄

0) · dα = 0 and

∫ 1

0

∇f̃U
α (x̄0) · dα = 0

That is
∫ 1

0

{∇f̃L
α (x̄

0) +∇f̃U
α (x̄0)} · dα = 0

Next, we prove second order necessary condition.

Theorem 4.4. Let f̃ be a twice continuously H-differentiable fuzzy-valued func-

tion defined on T ⊆ R
n. If x̄0 is a locally non-dominated solution of (FOP)

and for any direction d̄ and for any δ > 0 there exists λ ∈ (0, δ) such that

f̃(x̄0 + λ · d̄) and f̃(x̄0) are comparable then ∇2f̃(x̄0) is positive semidefinite

fuzzy matrix.

Proof: We prove the result by contradiction. Suppose∇2f̃(x̄0) is not a positive

semidefinite fuzzy matrix. Then by definition, there exists some α0 ∈ [0, 1],

such that either

d̄t0 · ∇
2f̃L

α0
(x̄) · d̄0 < 0

or

d̄t0 · ∇
2f̃U

α0
(x̄) · d̄0 < 0,

for some direction d̄0. Without loss of generality, we assume that

d̄t0 · ∇
2f̃L

α0
(x̄) · d̄0 < 0 (4.2)

Now let x̄(β) = x̄0 + βd̄ and define the composite function

φα(β) = f̃L
α (x̄

0 + βd̄),

for all α ∈ [0, 1]. Since f̃ is twice continuously H-differentiable fuzzy-valued

function on T . By Proposition 3.1 and 3.5, f̃L
α and f̃U

α are also twice con-

tinuously differentiable functions on T , for all α ∈ [0, 1]. Then by Taylor’s

theorem,

φα(β) = φα(0) + φ′
α(0) · β + φ′′

α(0) ·
β2

2
+O(β2),

for all α ∈ [0, 1]. Now since x̄0 is a locally non-dominated solution of (FOP)

then by Theorem 4.3,

φ′
α(0) = d̄ · ∇f̃L

α (x̄
0) = 0,

for all α ∈ [0, 1]. Therefore,

φα(β) − φα(0) = φ′′
α(0) ·

β2

2
+O(β2).
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Since φ′′
α(0) = d̄t · ∇2f̃L

α (x̄
0) · d̄,

φα(β)− φα(0) = (d̄t · ∇2f̃L
α (x̄

0) · d̄)
β2

2
+O(β2).

Taking α = α0 and d̄ = d̄0, from (4.2) and for sufficiently small β,

φα0
(β) − φα0

(0) < 0.

That is,

f̃L
α0
(x̄0 + βd̄0) < f̃L

α0
(x̄0) (4.3)

Now β is chosen in such a way that f̃(x̄0+βd̄0) and f̃(x̄0) are comparable. That

is either f̃(x̄0+βd̄0) � f̃(x̄0) or f̃(x̄0+βd̄0) � f̃(x̄0). But f̃(x̄0+βd̄0) � f̃(x̄0)

not possible because of (4.3). Therefore,

f̃(x̄0 + βd̄0) � f̃(x̄0)

which contradicts the assumption that , x̄0 is a locally non-dominated solution.

Therefore, ∇2f̃(x̄0) is a positive semidefinite fuzzy matrix.

Now, we prove second-order sufficient condition.

Theorem 4.5. Let f̃ be a twice continuously H-differentiable function on T ⊆

R
n. Suppose that

(1) ∇f̃(x̄0) = 0̃

(2) ∇2f̃(x̄0) is positive definite fuzzy matrix.

Then, x̄0 is locally non-dominated solution of (FOP).

Proof: We prove this result by contradiction. Suppose x̄0 ∈ T is not a locally

non-dominated solution of (FOP). Then, for any ǫ > 0 there exists x̄1(6= x̄0) ∈

Nǫ(x̄
0) ∩ T such that f̃(x̄1) � f̃(x̄0). That is., there exists x̄1 ∈ Nǫ(x̄

0) ∩ T

such that

f̃(x̄1)Lα ≤ f̃(x̄0)Lα and f̃(x̄1)Uα ≤ f̃(x̄0)Uα (4.4)

for all α ∈ [0, 1]. Now since f̃ is the twice continuously H-differentiable function,

f̃L
α and f̃U

α are also twice continuously differentiable functions, for all α ∈ [0.1].

Using assumption 2 and Rayleigh’s inequality (refer [4], page no. 34), it follows

that if d̄ 6= 0, then

0 < λmin(∇
2f̃L

α (x̄
0))‖d̄‖2 ≤ d̄t · ∇2f̃L

α (x̄
0) · d̄.

By Taylor’s theorem and assumption 1,

f̃L
α (x̄

0 + d̄)− f̃L
α (x̄

0) =
1

2
d̄t · ∇2f̃L

α (x̄
0) · d̄+O(‖d̄‖2)

≥
λmin(∇

2f̃L
α (x̄

0))

2
‖d̄‖2 +O(‖d̄‖2)

> 0,
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for all d̄ such that ‖d̄‖ is sufficiently small. Now choose x̄1 so close to x̄0 so

that d̄ = x̄1 − x̄0 is sufficiently small and hence,

f̃L
α (x̄

1)− f̃L
α (x̄

0) = f̃L
α (x̄

0 + d̄)− f̃L
α (x̄

0) > 0

That is,

f̃L
α (x̄

1) > f̃L
α (x̄

0)

This gives contradiction to inequality (4.4). Hence proved the result.

We consider two examples to illustrate the above results.

Example 4.1.

Minimize f̃(x1, x2),

subject to x̄ = (x1, x2) ∈ R
2,

where f̃ : R2 → F (R) be defined by

f̃(x1, x2) = (1, 2, 4)⊙ x2
1 ⊕ (1, 2, 4)⊙ x2

2 ⊕ (1, 3, 5),

(1, 2, 4) and (1, 3, 5) are triangular fuzzy numbers.

By the first order necessary condition, we have
∫ 1

0

{∇f̃L
α (x̄

0) +∇f̃U
α (x̄0)} · dα = 0

Here, f̃L
α (x1, x2) = (1 + α)x2

1 + (1 + α)x2
2 + (1 + 2α) and

f̃U
α (x1, x2) = (4− 2α)x2

1 + (4− 2α)x2
2 + (5 − 2α).

Therefore,

∇fL
α (x1, x2) =

(

2(1 + α)x1

2(1 + α)x2

)

and ∇fU
α (x1, x2) =

(

2(4− 2α)x1

2(4− 2α)x2

)

.

Therefore,
∫ 1

0

{∇f̃L
α (x̄

0) +∇f̃U
α (x̄0)} · dα =

(

9x1

9x2

)

= 0.

That is, x0 = (x1, x2) = (0, 0).

Now to verify second order necessary and sufficient conditions, we find fuzzy

Hessian matrix of f̃(x). The α-level matrices of fuzzy Hessian matrix are

∇2f̃L
α (x) =

(

2(1 + α) 0

0 2(1 + α)

)

and

∇2f̃U
α (x) =

(

2(4− 2α) 0

0 2(4− 2α)

)

.

Since both the α-level matrices ∇2f̃L
α (x) and ∇2f̃U

α (x) are positive definite

matrices for all α ∈ [0, 1]. Therefore, x0 = (0, 0) satisfies the second order
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necessary and sufficient condition for a locally non-dominated solution. Hence,

x0 = (0, 0) is a locally non-dominated solution of given problem.

Now we consider another example.

Example 4.2.

Minimize f̃(x1, x2),

subject to x̄ = (x1, x2) ∈ R
2,

where f̃ : R2 → F (R) be defined by

f̃(x1, x2) = (1, 2, 4)⊙ x3
1 ⊕ (1, 2, 4)⊙ x3

2 ⊕ (1, 3, 5),

(1, 2, 4) and (1, 3, 5) are triangular fuzzy numbers.

By the first order necessary condition, we have
∫ 1

0

{∇f̃L
α (x̄

0) +∇f̃U
α (x̄0)} · dα = 0.

Here, f̃L
α (x1, x2) = (1 + α)x3

1 + (1 + α)x3
2 + (1 + 2α) and

f̃U
α (x1, x2) = (4− 2α)x3

1 + (4− 2α)x3
2 + (5 − 2α).

Therefore,

∇fL
α (x1, x2) =

(

3(1 + α)x2
1

3(1 + α)x2
2

)

and

∇fU
α (x1, x2) =

(

3(4− 2α)x2
1

3(4− 2α)x2
2

)

.

Therefore,
∫ 1

0

{∇f̃L
α (x̄

0) +∇f̃U
α (x̄0)} · dα =

(

13.5x2
1

13.5x2
2

)

= 0.

That is, x0 = (x1, x2) = (0, 0).

Now to verify second order necessary and sufficient conditions, we find fuzzy

Hessian matrix of f̃(x). The α-level matrices of fuzzy Hessian matrix are:

∇2f̃L
α (x) =

(

6(1 + α)x1 0

0 6(1 + α)x2

)

and

∇2f̃U
α (x) =

(

6(4− 2α)x1 0

0 6(4− 2α)x2

)

.

Since both the α-level matrices ∇2f̃L
α (x) and ∇2f̃U

α (x) are positive semidefinite

matrices for all α ∈ [0, 1] at point x0 = (0, 0). Therefore, x0 = (0, 0) satisfies the

second order necessary condition but not the sufficient condition for a locally
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non-dominated solution, as none of the α-level matrices is positive definite at

x0 = (0, 0). Hence, x0 = (0, 0) is not a locally non-dominated solution of given

problem.

5. Conclusions

Using partial order relation on set of fuzzy numbers, the first order nec-

essary and sufficient optimality conditions for a nonlinear unconstrained fuzzy

optimization problem have been derived in this paper. We have used Hukuhara

differentiability of a fuzzy-valued function for proving the same. We have also

provided two examples to illustrate the possible applications in this subject.
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