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EXISTENCE OF HUKUHARA DIFFERENTIABILITY
OF FUZZY-VALUED FUNCTIONS

U. M. PIRZADA AND D. C. VAKASKAR

Abstract. In this paper, we discuss existence of Hukuhara differentia-

bility of fuzzy-valued functions. Several examples are worked out to

check that fuzzy-valued functions are one time, two times and n-times

H-differentiable. We study the effects of fuzzy modelling on existence of

Hukuhara differentiability of fuzzy-valued functions. We discuss existence

of gH-differentiability and its comparison with H-differentiability.
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1. Introduction

Hukuhara differentiability of fuzzy-valued functions is generalization of

Hukuhara differentiability of set-valued functions. This differentiability is based

on Hukuhara difference. Hukuhara introduced this difference (subtraction) of

two sets in [6]. He introduced the notions of integral and derivative for set-

valued mappings and considered the relationship between them. This deriv-

ative is widely studied and analysed by researchers for set-valued as well as

fuzzy-valued functions. Wide range of applications of Hukuhara derivatives

are studied in fuzzy differential equations and fuzzy optimization problems.

Unfortunately, the derivative is very restrictive. Its existence based on certain

conditions. We found that it is very interesting to study and analyse these con-

ditions for several basic and important fuzzy-functions. This study helps the

researchers to identify the class of fuzzy-functions which are Hukuhara differ-

entiable and can be utilized in applications like fuzzy optimization, fuzzy ordi-

nary and partial differential equations. We explore fuzzy modelling part which

is crucial in any fuzzy theory and study its effect on existence of Hukuhara

differentiability of fuzzy-valued function by giving appropriate examples.

2010 Mathematics Subject Classification. 03E72 and 26E50.

This research work is supported by National Board for Higher Mathematics (NBHM) ,

Department of Atomic Energy (DAE), India. Key words and phrases: Fuzzy-valued

functions and Hukuhara differentiability and Fuzzy modelling

ISSN 0019–5839 c© Indian Mathematical Society, 2016 .

239



240 U. M. PIRZADA AND D. C. VAKASKAR

An improvement of Hukuhara difference is generalized Hukuhara difference

( gH-difference) defined in [15, 16]. It is more general than Hukuhara differ-

ence (H-difference). Bede and Stefanini [2] have defined generalized Hukuhara

differentiability of fuzzy-valued functions based on gH-difference. We discuss

existence of this differentiability and its comparison with H-differentiability.

The paper is organized in following manner. Section 2 contains basics of fuzzy

numbers. H-differentiability of a fuzzy-valued function is discussed and com-

pared with gH-differentiability with several examples in Section 3. Effect of

modelling on existence of H-differentiability is discussed in Section 4. Conclu-

sion is given in the last section.

2. Fuzzy numbers and arithmetic

We start with some basic definitions.

Definition 2.1. [4] Let R be the set of real numbers and ã : R → [0, 1] be a

fuzzy set. We say that ã is a fuzzy number if it satisfies the following properties:

(i) ã is normal, that is, there exists x0 ∈ R such that ã(x0) = 1;

(ii) ã is fuzzy convex, that is, ã(tx+ (1− t)y) ≥ min{ã(x), ã(y)}, whenever

x, y ∈ R and t ∈ [0, 1];

(iii) ã(x) is upper semi-continuous on R, that is, {x/ã(x) ≥ α} is a closed

subset of R for each α ∈ (0, 1];

(iv) cl{x ∈ R/ã(x) > 0} forms a compact set,

where cl denotes closure of a set. The set of all fuzzy numbers on R is

denoted by F (R). For all α ∈ (0, 1], α-level set ãα of any ã ∈ F (R) is defined

as ãα = {x ∈ R/ã(x) ≥ α} . The 0-level set ã0 is defined as the closure of the

set {x ∈ R/ã(x) > 0}. By definition of fuzzy numbers, we can prove that, for

any ã ∈ F (R) and for each α ∈ (0, 1] , ãα is compact convex subset of R, and

we write ãα = [ãLα, ã
U
α ]. ã ∈ F (R) can be recovered from its α-level sets by a

well-known decomposition theorem (ref. [5]), which states that ã = ∪α∈[0,1]α·ãα
where union on the right-hand side is the standard fuzzy union.

Definition 2.2. [14] Let ã, b̃ ∈ F (R) with ãα = [ãLα, ã
U
α ] and b̃α = [b̃Lα, b̃

U
α ].

According to Zadeh’s extension principle, addition and scalar multiplication in

the set of fuzzy numbers F (R) by their α-level sets are given as follows:

(ã⊕ b̃)α = [ãLα + b̃Lα, ã
U
α + b̃Uα ]

(λ� ã)α = [λ · ãLα, λ · ãUα ], if λ ≥ 0

= [λ · ãUα , λ · ãLα], if λ < 0
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where λ ∈ R and α ∈ [0, 1]. (ã ⊕ b̃) and (λ � ã) can be determined using the

Decomposition theorem stated in Definition 2.1.

The difference between two fuzzy numbers are defined as follows:

Definition 2.3. For fuzzy numbers ã, b̃, with α-level sets ãα = [ãLα, ã
U
α ] and

b̃α = [b̃Lα, b̃
U
α ], a difference (ã	 b̃) is defined using its α-level sets as

(ã	 b̃)α = [ãLα − b̃Uα , ãUα − b̃Lα],

for all α ∈ [0, 1]. Then the difference (ã	 b̃) is determined using the Decompo-

sition theorem.

Definition 2.4. The membership function of a trapezoidal fuzzy number ã is

defined as

ã(r) =


(r−a1)
(a2−a1) if a1 ≤ r ≤ a2

1 if a2 ≤ r ≤ a3
(a4−r)
(a4−a3) if a3 < r ≤ a4

0 otherwise

It is denoted by ã = (a1, a2, a3, a4) and has α-level set ãα = [a1+α(a2−a1), a4−
α(a4 − a3)].

Definition 2.5. [13] The membership function of a triangular fuzzy number ã

is defined as

ã(r) =


(r−a1)
(a−a1) if a1 ≤ r ≤ a
(a2−r)
(a2−a) if a < r ≤ a2

0 otherwise

which is denoted by ã = (a1, a, a2). The α-level set of ã is then

ãα = [(1− α)a1 + αa, (1− α)a2 + αa].

Definition 2.6. [8] Let A,B ⊆ Rn. The Hausdorff metric dH is defined by

dH(A,B) := max{sup
x∈A

inf
y∈B
‖x− y‖, sup

y∈B
inf
x∈A
‖x− y‖}.

Then the metric dF on F (R) is defined as

dF (ã, b̃) := sup
0≤α≤1

{dH(ãα, b̃α)},

for all ã, b̃ ∈ F (R). Since ãα and b̃α are compact intervals in R,

dF (ã, b̃) = sup
0≤α≤1

max{|ãLα − b̃Lα|, |ãUα − b̃Uα |}.

Then (F (R), dF ) is a complete metric space, see [4], with the properties

1. dF (ã⊕ c̃, b̃⊕ c̃) = dF (ã, b̃), for all ã, b̃, c̃ ∈ F (R)
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2. dF (λ� ã, λ� b̃) = |λ|dF (ã, b̃), for all ã, b̃ ∈ F (R) and λ ∈ R
3. dF (ã⊕ b̃, c̃⊕ d̃) ≤ dF (ã, c̃) + dF (b̃, d̃), for all ã, b̃, c̃, d̃ ∈ F (R).

The following results and concepts are known.

Theorem 2.7. (See [1])

(i) If we denote 0̃ = χ{0} then 0̃ ∈ F (R) is neutral element with respect to

⊕, i.e. ã⊕ 0̃ = 0̃⊕ ã = ã, for all ã ∈ F (R).

(ii) With respect to 0̃, none of ã ∈ F (R) − R , has inverse in F (R) (with

respect to ⊕).

(iii) For any x, y ∈ R with x, y ≥ 0 or x, y ≤ 0 and any ã ∈ F (R) , we have

(x+ y)� ã = x� ã⊕ y � ã; For general x, y ∈ R , the above property

does not hold.

(iv) For any λ ∈ R and any ã, b̃ ∈ F (R) , we have λ�(ã⊕ b̃) = λ� ã⊕λ� b̃;
(v) For any λ, µ ∈ R and any ã ∈ F (R) , we have λ� (µ� ã) = (λµ)� ã.

3. Hukuhara differentiability

Definition 3.1. [7] Let V be a real vector space and F (R) be a set of fuzzy

numbers. Then a function f̃ : V → F (R) is called fuzzy-valued function on V .

Corresponding to such a function f̃ and α ∈ [0, 1], we denote two real-valued

functions f̃Lα and f̃Uα on V as f̃Lα (x) = (f̃(x))Lα and f̃Uα (x) = (f̃(x))Uα for all

x ∈ V . These functions f̃Lα (x) and f̃Uα (x) are called α-level functions of the

fuzzy-valued function f̃ .

Remark 3.2. The difference (	) between two fuzzy numbers is a usual fuzzy

difference based on interval arithmetic. This difference always exists. But the

important property is not valid, i.e. ((ã+ b̃)	 b̃)α 6= ãα. Even, ã	 ã 6= 0̃, where

0̃ = χ{0}.

To overcome this situation, Hukuhara difference is defined.

Definition 3.3. Let ã and b̃ be two fuzzy numbers. If there exists a fuzzy

number c̃ such that c̃⊕ b̃ = ã. Then c̃ is called Hukuhara difference of ã and b̃

and is denoted by ã	H b̃.

We have following remarks:

Remark 3.4. The necessary condition for Hukuhara difference ã	H b̃ to exist

is that some translate of b̃ is a fuzzy subset of ã. For instance, ã = (−1, 1, 3)

and b̃ = (−1, 0, 1) are triangular fuzzy numbers such that (−1, 1, 3) = (0, 1, 2)⊕
(−1, 0, 1) then (0, 1, 2) is called H-difference of ã and b̃, as b̃ is a fuzzy subset

of ã.
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Remark 3.5. Here (ã�H ã) = 0̃ and (ã+ b̃)�H b̃ = ã, for all ã, b̃ ∈ F (R).

Hukuhara differentiability ( H-differentiability ) of a fuzzy-valued function

due to Puri and Ralescu [12] define as follows:

Definition 3.6. Let X be a subset of R. A fuzzy-valued function f̃ : X → F (R)

is said to be H-differentiable at x0 ∈ X if and only if there exists a fuzzy number

Df̃(x0) such that the limits (with respect to metric dF )

lim
h→0+

1

h
� [f̃(x0 + h)	H f̃(x0)], and lim

h→0+

1

h
� [f̃(x0)	H f̃(x0 − h)]

both exist and are equal to Df̃(x0). In this case, Df̃(x0) is called the H-

derivative of f̃ at x0. If f̃ is H-differentiable at any x ∈ X, we call f̃ is

H-differentiable over X.

We have following proposition regarding differentiability of f̃Lα and f̃Uα .

Proposition 3.7. Let X be a subset of R. If a fuzzy-valued function f̃ : X →
F (R) is H-differentiable at x0 with derivative Df̃(x0), then f̃Lα (x) and f̃Uα (x)

are differentiable at x0, for all α ∈ [0, 1]. Moreover, we have (Df̃)α(x0) =

[D(f̃Lα )(x0), D(f̃Uα )(x0)].

Bede and Gal have discussed the conditions for existence of H-differentiability

of fuzzy-valued functions in [1]. We put these conditions in the form of following

proposition.

Proposition 3.8. Let c̃ ∈ F (R) and g : (a, b) → R+ be differentiable at

x0 ∈ (a, b) ⊂ R+. Define f̃ : (a, b) → F (R) by f̃(x) = c̃ � g(x), for all

x ∈ (a, b). If we suppose that, g′(x0) > 0 then Hukuhara differences of f̃ exist

and f̃ is H-differentiable at x0 with f̃ ′(x) = c̃� g′(x).

Proof. Since g′(x0) > 0, then

g′(x0) = lim
h→0

g(x0 + h)− g(x0)

h
,

it follows that for h > 0 sufficiently small, we have g(x0 + h)− g(x0) = ω(x0, h) >

0. Multiplying by c̃ it follows c̃� g(x0 + h) = c̃� g(x0)⊕ c̃� ω(x0, h) (An op-

erator � defines multiplication of a fuzzy number with a real number). That

is, there exists Hukuhara difference f̃(x0 + h)	H f̃(x0). Similarly, by

g′(x0) = lim
h→0

g(x0)− g(x0 − h)

h
,

reasoning as above, there exists the Hukuhara difference f̃(x0)	H f̃(x0 − h).

Now, if we suppose g′(x0) < 0, we see that we cannot get the above kind of rea-

soning to prove that the H-differences f̃(x0 + h)	H f̃(x0), f̃(x0)	H f̃(x0 − h)

and the derivative f̃ ′(x0) exist. �
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The generalized Hukuhara difference ( gH-difference) coming from [15,16] is

more general than Hukuhara difference (H-difference). From an algebraic point

of view, the difference between two sets may be interpreted both in terms of

addition as in 	H or in terms of negative addition. Based on this fact, the

generalized Hukuhara difference (gH-difference) is defined as follows:

Definition 3.9. [15,16] Given two fuzzy numbers ã, b̃ ∈ F (R), the gH-difference

is the fuzzy number c̃, if exists, such that

ã	gH b̃ = c̃⇔

{
(i) ã = b̃+ c̃,

or (ii) b̃ = ã− c̃.
(3.1)

In terms of α-level sets, [ã 	gH b̃]α = [min{ãLα − b̃Lα, ãUα − b̃Uα},max{ãLα −
b̃Lα, ã

U
α − b̃Uα}] and if H-difference exists, then ã�H b̃ = ã�gH b̃; the conditions

for the existence of c̃ = ã�gH b̃ ∈ F (R) are

case(i)

{
c̃Lα = ãLα − b̃Lα and c̃Uα = ãUα − b̃Uα
with c̃Lα increasing, c̃

U
α decreasing, c̃Lα ≤ c̃Uα ,

(3.2)

for all α ∈ [0, 1].

case(ii)

{
c̃Lα = ãUα − b̃Uα and c̃Uα = ãLα − b̃Lα
with c̃Lα increasing, c̃

U
α decreasing, c̃Lα ≤ c̃Uα ,

(3.3)

for all α ∈ [0, 1].

We discuss some examples.

Example 3.10. Consider two triangular shape fuzzy numbers ã = (3, 4, 5) and

b̃ = (−3,−2,−1). The gH-difference ã	gH b̃ exists as

(ã	gH b̃)Lα = min{ãLα − b̃Lα, ãUα − b̃Uα}

= min{(3 + α)− (−3 + α), (5− α)− (−1− α)} = 6

and

(ã	gH b̃)Uα = max{ãLα − b̃Lα, ãUα − b̃Uα}

= max{(3 + α)− (−3 + α), (5− α)− (−1− α)} = 6.

It satisfies the conditions for the existence in (3.2) and (3.3).

In some case, gH-difference of two fuzzy numbers may not exists.

Example 3.11. Consider a triangular shape fuzzy number ã = (0, 2, 4) and a

trapezoidal shape fuzzy number b̃ = (0, 1, 2, 3). The gH-difference ã	gH b̃ does

not exist as

(ã	gH b̃)L0 = ãL0 − b̃L0 = 0 < (ã	gH b̃)U0 = ãU0 − b̃U0 = 1
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and

(ã	gH b̃)L1 = 1 > (ã	gH b̃)U1 = 0,

so neither (3.2) nor (3.3) hold for any α ∈ [0, 1].

Bede and Stefanini [2] have defined Generalized Hukuhara differentiability

( gH-differentiability ) of fuzzy-valued functions based on gH-difference. The

generalized Hukuhara differentiability (gH-differentiability ) of the fuzzy-valued

functions is defined as:

Definition 3.12. [2] Let x0 ∈ X, X is an open interval and h be such that

x0 + h ∈ X, then gH-derivative of a function f̃ : X → F (R) at x0 is defined as

f̃ ′gH(x0) = lim
h→0

1

h
f̃(x0 + h)	gH f̃(x0). (3.4)

If f̃ ′gH(x0) ∈ F (R) satisfying (3.4) exists, we say that f̃ is generalized Hukuhara

differentiable ( gH-differentiable ) at x0. If f̃ is gH-differentiable at each x ∈ X
with gH-derivative f̃ ′gH(x) ∈ F (R), we say that f̃ is gH-differentiable on X.

Moreover, we can define continuously gH-differentiable fuzzy-valued function

using continuity of gH-differentiable fuzzy-valued function. For continuity of a

fuzzy-valued function, refer Definition 3.2 in [11].

Now we consider some fuzzy-valued functions and check existence of Hukuhara

and generalized Hukuhara differentiability. First we consider a constant fuzzy-

valued function.

Example 3.13. Consider a fuzzy-valued function f̃(x) = ã, x ∈ R and ã

is a fuzzy number with α-level sets ãα = [ãLα, ã
U
α ]. We claim that f̃ is H-

differentiable. f̃(x) can be written as f̃(x) = ã � g(x) where g(x) = 1 for

x ∈ R. Since g′(x) = 0, we can not use Proposition 3.7. For sufficiently small

h > 0, g(x+ h)− g(x) = 0. We can write g(x+ h) = g(x) + 0. Multiplying by

fuzzy number ã, ã�g(x+h) = ã� (g(x)+0) = ã�g(x)⊕ ã�0 (using Theorem

2.7 as g(x) = 1 > 0). Therefore, there exist H-difference f̃(x + h) 	H f̃(x)

which is zero. Similar way, we show existence of f̃(x)	H f̃(x− h). Therefore,

Hukuhara derivative of constant fuzzy-valued function f̃(x) = ã exists and its

derivative is f̃ ′(x) = 0̃. Here we see that α-level functions f̃Lα (x) = ãLα and

f̃Uα (x) = ãUα = are differentiable functions with respect to x for all α ∈ [0, 1].

Consider a linear fuzzy-valued function.

Example 3.14. Consider a fuzzy-valued function f̃(x) = ã � x, x ∈ R (ã is

a fuzzy number). For x > 0, f̃(x) is Hukuhara differentiable, since f̃(x) =

ã� g(x) where g(x) : R+ → R+ with g′(x) = 1 > 0 (see Proposition 3.7). For
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x < 0, α-level functions f̃Lα (x) = ãUαx and f̃Uα (x) = ãLαx of the fuzzy-valued

function f̃(x) = ã � x. For sufficiently small h > 0, f̃Lα (x + h) − f̃Lα (x) =

ãUαh and f̃Uα (x + h) − f̃Uα (x) = ãLαh. Hukuhara difference does not exist as

f̃Lα (x + h) − f̃Lα (x) = ãUαh � f̃Uα (x + h) − f̃Uα (x) = ãLαh ( ãLα ≤ ãUα , α ∈ [0, 1]

and h > 0). Therefore, f̃(x) is not Hukuhara differentiable for x < 0. We

also see that α-level functions f̃Lα (x) = ãUαx and f̃Uα (x) = ãLαx, α ∈ [0, 1] are

differentiable functions of x. We see that f̃(x) is gH-differentiable, for x < 0.

Because, here Hukuhara differences are given as

[f̃(x+ h)	gH f̃(x)]α = [min{f̃Lα (x+ h)− f̃Lα (x), f̃Uα (x+ h)− f̃Uα (x)},

max{f̃Lα (x+ h)− f̃Lα (x), f̃Uα (x+ h)− f̃Uα (x)}]

= [ãLαh, ã
U
αh]

for all α ∈ [0, 1] and h > 0. While gH-differences

f̃(x)	gH f̃(x− h)]α = [min{f̃Lα (x)− f̃Lα (x− h), f̃Uα (x)− f̃Uα (x− h)},

max{f̃Lα (x)− f̃Lα (x− h), f̃Uα (x)− f̃Uα (x− h)}]

= [ãLαh, ã
U
αh]

for α ∈ [0, 1] and h > 0. Now we check Hukuhara differentiability of the fuzzy-

valued function on R. We see that α-level functions f̃α(x) are defined as

f̃α(x) =

{
[ãLαx, ã

U
αx] when x ≥ 0,

[ãUαx, ã
L
αx] when x < 0

are not differentiable at x = 0. Therefore, we say that the fuzzy-valued function

ã � x, x ∈ R is not Hukuhara differentiable at x = 0. However, it is gH-

differentiable on R and is gH-derivative is f̃ ′(x) = ã.

Consider an another example of quadratic fuzzy-valued function.

Example 3.15. Let f̃ : [−1, 1] → F (R) be a fuzzy-valued function defined as

f̃(x) = ã � x2 where ã is a fuzzy number with α-level sets ãα = [ãLα, ã
U
α ]. Its

α-level functions are defined as f̃α(x) = [ãLαx
2, ãUαx

2] for x ∈ [−1, 1]. First we

check Hukuhara differentiability of f̃ . We express f̃ as f̃(x) = ã� g(x), where

g(x) = x2, x ∈ [−1, 1]. For −1 ≤ x < 0 and sufficiently small h > 0, we have

g(x+h)−g(x) = w(x, h), w(x, h) = 2xh+h2. We can not find a fuzzy number

of the form ã� w(x, h) for x < 0. Therefore, in this case Hukuhara difference

does not exist and hence given fuzzy-valued function is not H-differentiable.

For 0 < x ≤ 1, g(x) = x2 with g′(x) = 2x > 0. By Proposition 3.8, Hukuhara

differences exist for given fuzzy-valued function. Now at x = 0, for sufficiently

small h > 0, we have g(x + h) − g(x) = w1(h), w1(h) = h2. Here we can

defined a fuzzy number in the form ã�w1(h) = ã�h2. Therefore, H-difference
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exists. Hence, we observed that the given fuzzy-valued function is Hukuhara

differentiable for 0 ≤ x ≤ 1 while its α-level functions f̃Lα (x) = ãLαx
2 and

f̃Uα (x) = ãUαx
2 are differentiable for x ∈ [−1, 1]. It is easy to see that the given

fuzzy-valued function is gH-differentiable for x ∈ [−1, 1].

In general, a fuzzy-valued function f̃ : R → F (R) with f̃(x) = ã � g(x)

where g is a real-valued function with domain x < 0 or g′(x) < 0 is not

Hukuhara differentiable but it is gH-differentiable. In both the cases, its lower

and upper level functions may or may not be differentiable. We state one

important property of H-differentiability.

Theorem 3.16. [3] If f̃ , g̃ : X → F (R) are Hukuhara differentiable at x0 ∈
X ⊆ R, then f̃ ⊕ g̃ and c� f̃ , for c ∈ R are Hukuhara differentiable at x0 and

(f̃ ⊕ g̃)′(x0) = f̃ ′(x0)⊕ g̃′(x0), (c� f̃)′(x0) = c� f̃ ′(x0)

Remark 3.17. By this property, we have a class of H-differentiable fuzzy-

valued functions which are linear combination of H-differentiable fuzzy-valued

functions.

We define second order and higher order H-differentiability under the as-

sumption that the fuzzy-valued function is H-differentiable. Cn(X,F (R)),

n ≥ 1 denotes the space of n-times continuously H-differentiable fuzzy-valued

functions from X ⊆ R to F (R). By Theorem 5.2 of [9] for f̃ ∈ Cn(X,F (R))

we have

(f̃ (i)(x))α = [(f̃Lα (x))(i), (f̃Uα (x))(i)],

for i = 0, 1, 2, ...n and α ∈ [0, 1]. Here i denotes ith order derivative. We

discuss higher order H-differentiability by some illustrations.

Example 3.18. Let f̃ : [0, π] → R be a fuzzy-valued function defined as

f̃(x) = ã�sin(x) where ã is a fuzzy number with α-level sets ãα = [ãLα, ã
U
α ]. We

see that g(x) = sin(x) is non-negative for x ∈ [0, π] but g′(x) = cos(x) ≥ 0 for

x ∈ [0, π/2]. Therefore, H-differences exist for x ∈ [0, π/2]. Hence, the function

f̃(x) = ã� sin(x) is H-differentiable on x ∈ [0, π/2] while it is gH-differentiable

for x ∈ [0, π]. Here we see that the α-level functions f̃Lα (x) = ãLα sin(x) and

f̃Uα (x) = ãUα sin(x) are differentiable for x ∈ [0, π]. Now to check the sec-

ond order H-differentiability of the given fuzzy-valued function, we consider

f̃(x) = ã� sin(x) for x ∈ [0, π/2] where it is H-differentiable with H-derivative

f̃ ′(x) = ã� cos(x). We see that the level functions ãLα cos(x) and ãUα cos(x) are

differentiable but it is not H-differentiable because here g′(x) = − sin(x) ≤ 0

for x ∈ [0, π/2]. It is to be noticed that the function is twice gH-differentiable

on x ∈ [0, π].
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Example 3.19. Consider a fuzzy-valued function f̃(x) = ã�xn, n ≥ 1 defined

on x ∈ R+. Here g(x) = xn > 0 with g′(x) = nxn−1 > 0, therefore by

Proposition 3.8, H-differences exist and function is H-differentiable on R+ with

H-derivative f̃ ′(x) = ã � (nxn−1). It is easy to see that the function f̃ ′(x) is

H-differentiable as g(x) = (nxn−1) > 0 with g′(x) = n(n − 1)xn−2 > 0 for

x ∈ R+. This function is n-times H-differentiable on x ∈ R+.

Example 3.20. Consider a fuzzy-valued function f̃(x) = ãn � xn ⊕ ãn−1 �
xn−1 ⊕ ... ⊕ ã1 � x ⊕ ã0, n ≥ 0 defined on x ∈ R+. It is easy to see that the

function is n-times H-differentiable on x ∈ R+.

Example 3.21. Consider a fuzzy-valued function f̃(x) = ã � ex defined on

x ∈ I = R+ ∪ {0}. Here g(x) = g′(x) = g′′(x) = .... = ex > 0 for x ∈ I,

therefore by Proposition 3.8, the function is n-times H-differentiable on x ∈ I.

We turn to Hukuhara differentiability of multi-variable fuzzy-valued func-

tions. Proposition 3.8 can be generalized for multi-variable fuzzy-valued func-

tion.

Proposition 3.22. Let c̃ ∈ F (R) and g : In → R+, (In = I× ...×I (n times),

I = (a, b) ⊂ R+) be differentiable at x̄0 ∈ In. Define f̃ : In → F (R) by f̃(x̄) =

c̃ � g(x̄), for all x̄ ∈ In. If we suppose that the partial derivatives ∂g(x̄0)
∂xi

> 0,

i = 1, ..., n then Hukuhara differences (f̃(x̄0 + h)	H f̃(x̄0), f̃(x̄0)	H f̃(x̄0 − h)

for sufficiently small h > 0) exist. Therefore, the partial H-derivatives of f̃

exist and is given as ∂f̃
∂xi

= c̃� ∂g
∂xi

,i = 1, ..., n at x̄0.

Proof. The partial derivative ∂g(x̄0)
∂xi

> 0, i = 1, ..., n is an ordinary derivative

with respect to each xi. Using the same reasoning used in the Proposition 3.8,

we have the proof. � �

Definition 3.23. We say that f̃ is H-differentiable at x̄0 if and only if one of

the partial H-derivatives ∂f̃/∂x1, ..., ∂f̃/∂xn exists at x̄0 and the remaining n-1

partial H-derivatives exist on some neighbourhood of x̄0 and are continuous at

x̄0 (in the sense of fuzzy-valued function).

Remark 3.24. To check second order Hukuhara differentiability of fuzzy-valued

function f̃(x̄) = c̃�g(x̄) , we have to check second order derivatives ∂2g(x̄0)
∂xi∂xj

> 0,

i, j = 1, ..., n.
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4. Fuzzy modeling and H-differentiability

Fuzzy modeling means develop a mathematical model of real world problem

under uncertain situations. If the parameters in the system are known approx-

imately, we model the system as a fuzzy system. We discuss some aspects of

fuzzy modeling. Consider a crisp function

f(x) = 2x, (4.1)

where x ∈ R+. If we fuzzify the function by approximating real number 2 or

making it to fuzzy, we have a fuzzy-valued function

f̃1(x) = 2̃� x, (4.2)

where 2̃ is a fuzzy number. Specifically, we take 2̃ = (0, 2, 4) a triangular fuzzy

number. We calculate f̃1(1) = 2̃�1 = (0, 2, 4), f̃1(2) = 2̃�2 = (0, 4, 8),...and so

on. The α-level sets of f̃1(x) are [(0+2α)x, (4−2α)x], for x ∈ R+ and α ∈ [0, 1].

The α-level functions are (f1)Lα(x) = (2α)x and (f1)Uα (x) = (4 − 2α)x. The

graphical representation of α-level functions for x = 1, 2, 3, 4, 5 are shown in

FIGURE 1. In FIGURE 1(a), the graphs of lower level functions (f1)Lα(x) =

(2α)x are drawn with respect to α by fixing x = 1, 2, 3, 4, 5. In FIGURE 1(b),

the graphs of upper level functions (f1)Uα (x) = (4−2α)x are drawn with respect

to α by fixing x = 1, 2, 3, 4, 5.

Now if we fuzzify the crisp function as

f̃2(x) = 1̃� (2x), (4.3)

where 1̃ = (0, 1, 2) then we have f̃2(1) = 1̃ � 2 = (0, 2, 4), f̃2(2) = 1̃ � 2 · 2 =

(0, 4, 8). The α-level sets of f̃2(x) are [(0 + α)(2x), (2 − α)(2x)], for x ∈ R+.

The graphical representation of α-level functions for x = 1, 2, 3, 4, 5 are shown

in FIGURE 2. The FIGURE 2(a) shows the graphs of lower level functions

(f2)Lα(x) = α(2x) and FIGURE 2(b) shows the graphs of upper level functions

(f2)Uα (x) = (2 − α)2x, with respect to α ∈ [0, 1], for fixed values of x =

1, 2, 3, 4, 5.

We see that we can make a fuzzy model by different ways of fuzzification

which sometimes gives same fuzzy output and sometimes it may gives different

output. For instance, we fuzzify the crisp function (4.1) using (4.2), by taking

2̃ = (1, 2, 3). Here we have changed the spread of fuzzy coefficient 2̃. Then

f̃(1) = 2̃�1 = (1, 2, 3) where as (4.3) gives f̃(1) = 1̃�2 = (0, 1, 2)�2 = (0, 2, 4).

We see that though the centre value of both fuzzy-valued outputs are same but

the spreads are different. By FIGURE 1 and 2, we say that both functions f̃1
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Figure 1

and f̃2 have same α-level functions. Therefore, in fuzzy modelling we can use

function f̃1 or f̃2 as a fuzzy model for given crisp function.

Now we see the effect of modelling on existence of H-differentiability. Con-

sider a multi-variable fuzzy-valued function and check its H-differentiability.

Example 4.1.

f̃(x1, x2) = (1̃� x3
1)⊕ (2̃� x3

2)⊕ (1̃� x1 · x2),

where 1̃ = (−1, 1, 3) and 2̃ = (1, 2, 3) are triangular fuzzy numbers and x1, x2 ∈
R+. Using fuzzy arithmetic, the α-level functions are

f̃Lα (x1, x2) = (−1 + 2α)x3
1 + (1 + α)x3

2 + (−1 + 2α)(x1 · x2), (4.4)

f̃Uα (x1, x2) = (3− 2α)x3
1 + (3− α)x3

2 + (3− 2α)(x1 · x2), (4.5)

for α ∈ [0, 1]. To check existence of Hukuhara differentiability, we put the

given fuzzy-valued function in the following form

f̃(x1, x2) = 1̃� g1(x1, x2)⊕ 2̃� g2(x1, x2)⊕ 1̃� g3(x1, x2),
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where g1(x1, x2) = x3
1, g2(x1, x2) = x3

2, g3(x1, x2) = x1 · x2 are real-valued

functions defined on R2
+. We see that partial derivative of g1(x1, x2) = x3

1

with respect to x2 is zero. So the condition for existence of H-differentiability

given in Proposition 3.22 does not hold. Similarly, the partial derivative of

g2(x1, x2) = x3
2 with respect to x1 is zero. We modify the form of fuzzy-valued

objective function as:

f̃(x1, x2) = 1̃� g1(x1, x2)⊕ 1̃� g2(x1, x2),

where g1(x1, x2) = (x3
1 + 2x3

2), g2(x1, x2) = x1 · x2. Here we see that the partial

derivatives of g1, g2 with respect to x1, x2 are greater than zero, since x1 and x2

are in R+. Therefore, by Proposition 3.22, we say that the later fuzzy-valued

function is H-differentiable.

To check second order H-differentiability of f̃ , we need to check ∂2g(x̄0)
∂xi∂xj

> 0,

for i, j = 1, 2. But we see that ∂2g1(x̄)
∂x2∂x1

= 0 and ∂2g2(x̄)
∂x1∂x2

= 0. Therefore,

Hukuhara differences for second order H-partial derivatives of f̃ do not exist.
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We further modify the form of fuzzy-valued objective function as

f̃(x1, x2) = 1̃� g(x1, x2),

where g(x1, x2) = x3
1 +2x3

2 +x1x2 and 1̃ = (0, 1, 2). For this function g(x1, x2),

first and second order partial derivatives are positive with respect to both vari-

ables. Therefore, the first and second H-partial derivatives exist for the fuzzy-

valued function f̃(x1, x2) = 1̃� g(x1, x2).

Remark 4.2. In general, we can make fuzzy-valued function f̃(x̄) = c̃ � g(x̄)

, x̄ = (x1, x2, ..., xn) Hukuhara differentiable by modifying fuzzy modeling. For

instance, for f̃(x1, x2) = 1̃� g1(x1, x2)⊕ 2̃� g2(x1, x2), where g1(x1, x2) = x1

and g2(x1, x2) = x2, x1, x2 ∈ R+, ∂g1(x̄)
∂x2

= 0 and ∂g2(x̄)
∂x1

= 0. But if modify the

fuzzy model as f̃(x1, x2) = 1̃ � g(x1, x2), g(x1, x2) = x1 + 2x2 then ∂g(x̄)
∂xi

> 0,

for i = 1, 2 and hence Hukuhara differences exist.

Differentiability plays key role in solving optimization problems. To obtain

the optimality conditions in a fuzzy optimization problem, it is necessary that

the fuzzy-valued objective function must be twice differentiable. In order to

apply the optimality conditions (see ref. [10] ) with respect to Hukuhara dif-

ferentiability of a fuzzy-valued objective function, we need to check the first

and second order H-differentiability. Also, to solve a fuzzy optimization prob-

lem using Newton method proposed in [11]), H-differentiability of fuzzy-valued

function is needed. So, we consider an optimization problem where parameters

of the objective function are fuzzy numbers and check its H-differentiability.

We see that by changing the fuzzy model of problem, the fuzzy function can

be H-differentiable.

Example 4.3. The fuzzy model of an optimization problem where the parame-

ters (approximate profits in maximization problem) are fuzzy numbers is given

as follows:

f̃(x1, x2) = 2̃� x2
1 ⊕ 2̃� x2

2 ⊕ 3̃,

where 2̃ = (1, 2, 4) and 3̃ = (1, 3, 5) are triangular fuzzy numbers and x1, x2 ∈
R+.

In order to solve the problem by either [10] or [11] method, we need to

check the Hukuhara differentiability of the fuzzy-valued function. We express

the objective function as

f̃(x1, x2) = 2̃� g1(x1, x2)⊕ 2̃� g2(x1, x2)⊕ 3̃� g3(x1, x2),

where g1(x1, x2) = x2
1, g2(x1, x2) = x2

2 and g3(x1, x2) = 1. Using the same ar-

guments given in previous example, the fuzzy-valued function is not H-differentiable
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as the partial derivative of g1(x1, x2) with respect to x2 and the partial deriv-

ative of g2(x1, x2) with respect to x1 is zero. So the condition for existence

of H-differentiability given in Proposition 3.22 does not hold. To make it H-

differentiable, we can change the fuzzification of the problem as

f̃(x1, x2) = 1̃� g(x1, x2),

where 1̃ = (1/2, 1, 2) a triangular fuzzy number and g(x1, x2) = 2x2
1 + 2x2

2 +

2. If we do this fuzzy modeling, then fuzzy constant 3̃ is changed to 2̃. The

change is allowable because 3 belong to fuzzy number 2̃ with lower degree of

membership. By this new modeling, we can make the fuzzy-valued function

f̃(x1, x2) H-differentiable and it is possible to study the optimality conditions.

5. Conclusions

Existence of H-differentiability is discussed in detailed for single-variable

and multi-variable fuzzy-valued functions. H-differentiability of polynomial

fuzzy-valued functions, sine and exponential fuzzy-valued functions are dis-

cussed. We see that some of given functions which are not H-differentiable but

gH-differentiable. We also discussed higher order H-differentiability of fuzzy-

valued functions. It is very interesting to note that fuzzy modeling effects on

the existence of H-differentiability. In Examples 4.1 and 4.3, we see that if

modify the fuzzy model of given functions, they become H-differentiable.
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