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Abstract

Multi-variable nonlinear fuzzy optimization problem is considered under linear order relation on

fuzzy numbers. Using gH-differentiability of a fuzzy-valued function f̃ , new necessary and suffi-

cient optimality conditions are proposed. The optimality conditions are obtained without putting

additional conditions on fuzzy-valued functions like, convexity, quasi-convexity, pseudo-convexity.

Optimum solution of the fuzzy optimization problem is obtained based on the optimality conditions.

Illustrations and a case study are given to explain the numerical applications of the proposed results.

Comparison of optimality conditions from existing literature is given.
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1 Introduction

Fuzzy optimization accounts for any imprecision in the optimization problem. Bellman and Zadeh[2]

introduced fuzzy optimization problems, they have stated that a fuzzy decision can be viewed as the

intersection of fuzzy goals and problem constraints. There after a large number of solutions of linear

and non-linear fuzzy optimization problems are available in the literature. The optimality conditions for

fuzzy optimization problems have been proposed by Wu[10][11] & Pathak and Pirzada[14].
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Pathak and Pirzada[14], have studied the necessary and sufficient optimality conditions to find the

non-dominated solution of multi-variable fuzzy optimization problem. They have used the Hukuhara

differentiability and partial order relation on fuzzy numbers. Hukuhara differentiability is based on

Hukuhara difference. Unfortunately, Hukuhara difference may not always exists, for instance, for fuzzy-

valued function f̃ (x) = ã�g(x), the conditions for existence of Hukuhara differentiability are : the real-

valued function g must be defined on positive domain, that is, g : (a,b)→R+, (a,b)⊂R+ with g′(x)> 0.

Moreover, if function f̃ is not H-differentiable then its level-functions are also not differentiable.

Stefanini[23, 24] generalized the Hukuhara difference, the generalized Hukuhara difference is usu-

ally termed as gH-difference. Bede and Stefanini[3] have defined Generalized Hukuhara differentiabil-

ity ( gH-differentiability ) of fuzzy-valued functions based on gH-difference. The fuzzy-valued function

f̃ : R→ F(R) with f̃ (x) = ã�g(x) where g is a real-valued function with g′(x)< 0 is gH-differentiable

though its lower and upper level functions are not differentiable.

The ranking of fuzzy numbers plays the important role in the study of fuzzy-optimization. Usually

partial order relation (fuzzy max order) is adopted to compare fuzzy numbers, unfortunately under fuzzy-

max order relation, fuzzy numbers are not always comparable. Hence we use alternative approach

proposed by Goetschel and Voxman[8] called linear order relation on on fuzzy numbers under which

fuzzy numbers are comparable in the natural way.

Here we consider unconstrained multi-variable fuzzy optimization problem with linear order relation

defined on set of fuzzy numbers. The concept of gH-differentiability of fuzzy-valued function over R

have been used. The necessary and sufficient conditions to find local and global minimizer of fuzzy-

valued functions have been obtained and the optimal solution of non-linear fuzzy optimization problems

under a linear order relation on fuzzy numbers have been found.

The paper is organized as follows: In section 2, we cite some basic definitions and results on fuzzy

numbers, linear order relation on fuzzy numbers and gH-differentiability of a fuzzy-valued function

over R. The gH-differentiability of a fuzzy-valued function over Rn is defined in the same section. The

local and global minimizer of an unconstrained multi-variable fuzzy optimization problem based on the

optimality conditions have been found in Section 3. In Section 4, appropriate examples and case study

study are given to illustrate the application of proposed results. Moreover, we correct the Example 1

proposed by Pathak and Pirzada[14]. The section 5 contains conclusion.

2 Preliminaries

We start with definition of fuzzy numbers.

Definition 2.1 [6] Let R be the set of real numbers and ã : R→ [0,1] be a fuzzy set. The fuzzy set ã is
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called a fuzzy number if it satisfies the following properties:

(i) ã is normal, that is, there exists r0 ∈ R such that ã(r0) = 1;

(ii) ã is fuzzy convex, that is, ã(tr+(1− t)s)≥min{ã(r), ã(s)}, whenever r, s ∈ R and t ∈ [0,1];

(iii) ã(r) is upper semi-continuous on R, that is, {r/ã(r)≥α} is a closed subset of R for each α ∈ (0,1];

(iv) cl{r ∈ R/ã(r)> 0} forms a compact set,

where cl denotes closure of a set. The set of all fuzzy numbers on R is denoted by F(R).

The α-level set for a fuzzy number is defined as follows:

Definition 2.2 For all α ∈ (0,1], α-level set ãα of any ã ∈ F(R) is defined as

ãα = {r ∈ R/ã(r)≥ α}.

The 0-level set ã0 is defined as the closure of the set {r ∈ R/ã(r)> 0}.

Remark 2.1 By definition of fuzzy numbers, we can prove that, for any ã∈F(R) and for each α ∈ (0,1]

, ãα is compact convex subset of R, and we write ãα = [ãL
α , ã

U
α ].

Remark 2.2 The fuzzy number ã ∈ F(R) can be recovered from its α-level sets by a well-known de-

composition theorem (ref. [7]), which states that ã = ∪α∈[0,1]α · ãα where union on the right-hand side

is the standard fuzzy union.

Definition 2.3 [22] Addition and scalar multiplication in the set of fuzzy numbers F(R) by their α-level

sets, are defined as follows:

(ã⊕ b̃)α = [ãL
α + b̃L

α , ã
U
α + b̃U

α ]

(λ � ã)α = [λ · ãL
α ,λ · ãU

α ], i f λ ≥ 0

= [λ · ãU
α ,λ · ãL

α ], i f λ < 0

where ã, b̃ ∈ F(R), λ ∈ R and α ∈ [0,1].

Definition 2.4 [21] A triangular fuzzy number ã is defined using three real numbers aL,a and aU as

ã(r) =


(r−aL)
(a−aL)

i f aL ≤ r ≤ a
(aU−r)
(aU−a) i f a < r ≤ aU

0 otherwise
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and denoted by ã = (aL,a,aU). The α-level set of ã is then

ãα = [(1−α)aL +αa,(1−α)aU +αa],

for α ∈ [0,1].

Goetschel and Voxman [8] defined an ordering,� for all ã∈ F(R) such that ãL
α and ãU

α are Lebesgue

integrable with respect to α ∈ [0,1].

Definition 2.5 [8] Suppose that ã, b̃ ∈ F(R) with their α-level sets ãα = [ãL
α , ã

U
α ] and b̃α = [b̃L

α , b̃
U
α ], for

α ∈ [0,1] such that ãL
α , ãU

α , b̃L
α , b̃U

α are Lebesgue integrable with respect to α . Then ã� b̃ if∫ 1

0
α[ãL

α + ãU
α ]dα ≤

∫ 1

0
α[b̃L

α + b̃U
α ]dα

Remark 2.3 The ordering � is reflexive and transitive; moreover,any two elements of F(R) are com-

parable under the ordering �, i.e., � is a linear ordering for F(R), (refer [8]).

Based on the Definition 2.5, we say that ã≺ b̃ if

∫ 1

0
α[ãL

α + ãU
α ]dα <

∫ 1

0
α[b̃L

α + b̃U
α ]dα

Now we state the definition of Hausdorff metric on set of fuzzy numbers.

Definition 2.6 [16] Let A,B⊆ Rn. The Hausdorff metric dH is defined by

dH(A,B) := max{sup
x∈A

inf
y∈B
‖x− y‖,sup

y∈B
inf
x∈A
‖x− y‖}.

Then the metric dF on F(R) is defined as

dF(ã, b̃) := sup
0≤α≤1

{dH(ãα , b̃α)},

for all ã, b̃ ∈ F(R). Since ãα and b̃α are compact intervals in R,

dF(ã, b̃) = sup
0≤α≤1

max{|ãL
α − b̃L

α |, |ãU
α − b̃U

α |}.

Definition 2.7 [9] Let V be a real vector space and F(R) be a set of fuzzy numbers. Then a function

f̃ : V → F(R) is called fuzzy-valued function defined on V . For each x ∈ V , f̃ (x) is a fuzzy number.

Corresponding to this function f̃ , for α ∈ [0,1], we have two real-valued functions f̃ L
α and f̃ U

α on V as

f̃ L
α(x) = ( f̃ (x))L

α and f̃ U
α (x) = ( f̃ (x))Uα for all x ∈V . These functions f̃ L

α(x) and f̃ U
α (x) are called α-level

functions of the fuzzy-valued function f̃ .

The continuity of a fuzzy-valued function can be stated form [4] as
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Definition 2.8 [4] Let f̃ : Rn→ F(R) be a fuzzy-valued function. We say that f̃ is continuous at c ∈Rn

if and only if for every ε > 0, there exists a δ = δ (c,ε)> 0 such that

dF( f̃ (x), f̃ (c))< ε

for all x ∈ Rn with ‖x− c‖< δ . That is,

limx→c f̃ (x) := f̃ (c).

EXAMPLE 2.1 Let f̃ : X → F(R, X is an open subset of R+, be a fuzzy-valued function defined by

f̃ (x) = ã� x, x ∈ X and ã is a fuzzy number. The f̃ is a continuous fuzzy-valued function since, we find

an ε > 0, for a δ > 0 and c ∈ X such that |x− c|< δ implies

dF( f̃ (x), f̃ (c)) = sup
0≤α≤1

max{|ãL
αx− ãL

αc|, |ãU
α x− ãU

α c|}

= |x− c| sup
0≤α≤1

max{|ãL
α |, |ãU

α |}

< δdF(ã, 0̃) = ε,

where ε = δ ãU
0 . Therefore, f̃ is continuous function on X subset of R+.

Generalized Hukuhara difference (gH-difference) is defined as follows:

Definition 2.9 [23, 24] Given two fuzzy numbers ã, b̃ ∈ F(R), the gH-difference is the fuzzy number c̃,

if exists, such that

ã	gH b̃ = c̃⇔

 (i) ã = b̃+ c̃,

or (ii) b̃ = ã− c̃.
(2.1)

In terms of α-level sets, [ã	gH b̃]α = [min{ãL
α − ãL

α , ã
U
α − ãU

α},max{ãL
α − ãL

α , ã
U
α − ãU

α}].

The generalized Hukuhara differentiability (gH-differentiability ) of the fuzzy-valued function based

on gH-difference is defined as:

Definition 2.10 [3] Let x0 ∈ X, X is an open interval and h be such that x0 +h ∈ X, then gH-derivative

of a function f̃ : X → F(R) at x0 is defined as

f̃ ′gH(x0) = lim
h→0

1
h

f̃ (x0 +h)	gH f̃ (x0). (2.2)

If f̃ ′gH(x0) ∈ F(R) satisfying (2.2) exists, we say that f̃ is generalized Hukuhara differentiable ( gH-

differentiable ) at x0. If f̃ is gH-differentiable at each x ∈ X with gH-derivative f̃ ′gH(x) ∈ F(R), we say

that f̃ is gH-differentiable on X. Moreover, we can define continuously gH-differentiable fuzzy-valued

function using continuity of gH-differentiable fuzzy-valued function.

EXAMPLE 2.2 The gH-differentiable fuzzy-valued functions are listed in Table 2.
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The partial gH-derivative of a fuzzy-valued function f̃ on Rn can be defined in a same manner as the

partial H-derivative of a fuzzy-valued function defined in [16].

Definition 2.11 Let f̃ be a fuzzy-valued function defined on an open subset X of Rn and let x̄0 =

(x0
1, ...,x

0
n) ∈ X be fixed.

We say that f̃ has the ith partial gH-derivative Di f̃ (x̄0) at x̄0 if and only if the fuzzy-valued function

g̃(x̄i) = f̃ (x0
1, ..,x

0
i−1,xi,x0

i+1, ..,x
0
n) is gH-differentiable at x0

i with gH-derivative Di f̃ (x̄0). We also write

Di f̃ (x̄0) as (∂ f̃/∂xi)(x̄0).

We define gH-differentiability of the fuzzy-valued function f̃ on Rn as follows:

Definition 2.12 We say that f̃ is gH-differentiable at x̄0 if and only if one of the partial gH-derivatives

∂ f̃/∂x1, ...,∂ f̃/∂xn exists at x̄0 and the remaining n−1 partial gH-derivatives exist on some neighbor-

hood of x̄0 and are continuous at x̄0 (in the sense of fuzzy-valued function).

The gradient of f̃ at x̄0 is denoted by

∇ f̃ (x̄0) = (D1 f̃ (x̄0), ...,Dn f̃ (x̄0)),

and it defines a fuzzy-valued function from X to Fn(R) = F(R)× ....×F(R) (n times), where each

Di f̃ (x̄0) is a fuzzy number for i= 1, ...,n. We say that f̃ is gH-differentiable on X if it is gH-differentiable

at every x̄0 ∈ X .

Definition 2.13 We say that f̃ is continuously gH-differentiable at x̄0 if and only if all of the partial

gH-derivatives ∂ f̃/∂xi, i = 1, ..,n, exist on some neighborhood of x̄0 and are continuous at x̄0 (in the

sense of fuzzy-valued function).

We say that f̃ is continuously gH-differentiable on X if it is continuously gH-differentiable at every

x̄0 ∈ X.

Definition 2.14 Let f̃ : X→ F(R),X ⊂Rn be a fuzzy-valued function. Suppose now that there is x̄0 ∈ X

such that gradient of f̃ , ∇ f̃ , is itself gH-differentiable at x̄0, that is, for each i, the function Di f̃ : X →

F(R) is gH-differentiable at x̄0. Denote the gH-partial derivative of Di f̃ in the direction of ē j at x̄0 by

D2
i j f̃ or

∂ 2 f̃ (x̄0)

∂xi∂x j
, i f i 6= j,

and

D2
ii f̃ or

∂ 2 f̃ (x̄0)

∂x2
i

, i f i = j.

Then we say that f̃ is twice gH-differentiable at x̄0, with second gH-derivative ∇2 f̃ (x̄0) which is denoted

by

∇
2 f̃ (x̄0) =


∂ 2 f̃ (x̄0)

∂x2
1

... ∂ 2 f̃ (x̄0)
∂x1∂xn

... ... ...

∂ 2 f̃ (x̄0)
∂xn∂x1

... ∂ 2 f̃ (x̄0)
∂x2

n
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where ∂ 2 f̃ (x̄0)
∂xi∂x j

∈ F(R), i, j = 1, ...,n.

If f̃ is twice gH-differentiable at each x̄0 in X, we say that f̃ is twice gH-differentiable on X, and if for

each i, j = 1, ...,n, the cross-partial derivative ∂ 2 f̃
∂xi∂x j

is continuous function from X to F(R), we say that

f̃ is twice continuously gH-differentiable on X.

3 Optimal solution

We consider an unconstrained multi-variable fuzzy optimization problem (UMFOP):

Minimize f̃ (x̄), x̄ ∈ X

where X ⊆ Rn is an open set and f̃ : X → F(R) is a fuzzy-valued function.

Using linear order relation defined in Section 2, we can define optimum solution of (UMFOP) as

follows:

Definition 3.1 Let X ⊆ Rn be an open set and Let f̃ : X → F(R) be a fuzzy-valued function.

1. A point x̄∗ ∈ X is said to be a local minimum or minimizer, if there exists a ε > 0 such that

f̃ (x̄∗)� f̃ (x), for all x̄ ∈ Nε(x̄∗).

2. x̄∗ ∈ X is said to be a global minimum or minimizer, if f̃ (x̄∗)� f̃ (x̄), for all x̄ ∈ X.

3. A point x̄∗ ∈ X is said to be a strict local minimum or minimizer, if there exists a ε > 0 such that

f̃ (x̄∗)≺ f̃ (x̄), for all x̄ ∈ Nε(x∗).

4. x̄∗ ∈ X is said to be a strict global minimum or minimizer, if f̃ (x̄∗)≺ f̃ (x̄), for all x̄ ∈ X.

In the above, x̄∗ is a local (global) maximizer if ”�” is replaced by ”�”. To find an optimal solution of

(UMFOP), we propose the first-order necessary condition:

Theorem 3.1 Suppose f̃ : X → F(R) is gH-differentiable fuzzy-valued function, X is an open subset of

Rn. If x̄∗ ∈ X is a local minimizer of (UMFOP), then∫ 1

0
α[∇( f̃ L

α + f̃ U
α )(x̄∗)]dα = 0.

Proof: The proof is followed by hypothesis of the Theorem.

Definition 3.2 x∗ ∈ X satisfying the property of the above theorem is called a critical point.

The sufficient conditions show whether these points are minimizers/maximizers:
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Theorem 3.2 Let f̃ be a twice continuously gH-differentiable fuzzy-valued function defined on X ⊆Rn.

If x̄∗ is a local minimizer of (UMFOP) then∫ 1

0
α[∇2( f̃ L

α + f̃ U
α )(x̄∗)]dα

is a positive semi-definite matrix.

Now, we propose a second-order sufficient condition.

Theorem 3.3 Let f̃ be a twice continuously gH-differentiable function on X ⊆ Rn. Suppose that

1. ∫ 1

0
α[∇( f̃ L

α + f̃ U
α )(x̄∗)]dα = 0.

2. ∫ 1

0
α[∇2( f̃ L

α + f̃ U
α )(x̄∗)]dα

is positive definite matrix.

Then, x̄∗ is a strict local minimizer of (UMFOP).

Remark 3.1 The proofs of sufficient optimality conditions are straight forward and implemented in a

same line as done by Pathak and Pirzada [13].

4 Numerical applications

First we consider an example for single-variable fuzzy optimization problem.

EXAMPLE 4.1

Minimize f̃ (x) = (ã� x3)⊕ (b̃� x2), x ∈ R

where ã = (aL,a,aU) and b̃ = (bL,b,bU) are appropriate triangular fuzzy numbers.

By fuzzy arithmetic, we have α-level functions of the fuzzy-valued objective function are

f̃ L
α(x) =

 ((1−α)aL +aα)x3 +((1−α)bL +bα)x2 i f x≥ 0

((1−α)aU +aα)x3 +((1−α)bL +bα)x2 i f x < 0

and

f̃ U
α (x) =

 ((1−α)aU +aα)x3 +((1−α)bU +bα)x2 i f x≥ 0

((1−α)aL +aα)x3 +((1−α)bU +bα)x2 i f x < 0
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Adding these two functions, we get

( f̃ L
α + f̃ U

α )(x) = (((1−α)aL +aα)+((1−α)aU +aα)x3)+(((1−α)bL +bα)+((1−α)bU +bα))x2

which is three times continuously differentiable function.

Taking ã = 1̃ = (0,1,3) and b̃ = −̃12 = (−13,−12,−11) and applying the necessary condition,

∫ 1

0
α[D( f̃ L

α + f̃ U
α )(x)]dα = 0,

we get x = 0 and x = 6.8571 critical points. Now checking sufficient conditions at the critical points,

∫ 1

0
α[D2( f̃ L

α + f̃ U
α )(x)]dα ≥ 0

for all x ∈R, we observe that x = 0 is a strict local maximizer and x = 6.8571 is a strict local minimizer

of given fuzzy-valued function.

Remark 4.1 If we change the spread of the fuzzy data in the given fuzzy objective function, for instance,

if ã= 1̃= (−1,1,3) and b̃= −̃12= (−14,−12,−11) then strict local minimizer is changed to x= 8.111

from x = 6.8571. If ã = 1̃ = (−1,1,2) and b̃ = −̃12 = (−13,−12,−10) then strict local minimizer is

changed to x = 9.4667 from x = 6.8571. If ã = 1̃ = (0,1,2) and b̃ = −̃12 = (−13,−12,−11) then strict

local minimizer is changed to x = 8 from x = 6.8571 which is the same solution of the crisp objective

function.

EXAMPLE 4.2

Minimize f̃ (x) = (ã� x2)⊕ (b̃� (−x))⊕ ṽ, x ∈Ω⊆ R

where Ω is the set of all positive real numbers. ã = (aL,a,aU), b̃ = (bL,b,bU) and ṽ = (vL,v,vU) are

appropriate triangular fuzzy numbers.

By fuzzy arithmetic, we have α-level functions of the fuzzy-valued objective function are

f̃ L
α(x) = ((1−α)aL +aα)x2− ((1−α)bU +bα)x+((1−α)vL + vα) (4.1)

and

f̃ U
α (x) = ((1−α)aU +aα)x2− ((1−α)bL +bα)x+((1−α)vU + vα) (4.2)

Adding these two functions, we get
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( f̃ L
α + f̃ U

α )(x) = (((1−α)aL +aα)+((1−α)aU +aα)x2)+(((1−α)bL

+ bα)+((1−α)bU +bα))x+((1−α)vL + vα)+((1−α)vU + vα)

which is three times continuously differentiable function.

Taking ã = (0,1,4), b̃ = (0,3,4) and ṽ = (1,2,4). Applying the necessary condition,

∫ 1

0
α[D( f̃ L

α + f̃ U
α )(x)]dα = 0,

we get a critical point x = 1. Now checking sufficient conditions at the critical point,

∫ 1

0
α[D2( f̃ L

α + f̃ U
α )(x)]dα ≥ 0

for all x ∈Ω, we observe that x = 1 is a strict local minimizer of given fuzzy-valued function.

Remark 4.2 It has been observed that the fuzzy-valued function f̃ (x) = ((0,1,4)� x2)⊕ ((0,3,4)�

(−x))⊕ (1,2,4), x ∈Ω is the set of all positive real numbers, is not comparable under the partial order

relation- fuzzy-max order (see [12]). But the fuzzy-valued function is comparable under linear order

stated in this paper. By considering the fuzzy optimization problem under linear order relation, we have

obtained a local minimizer point.

Another illustration is for multi-variable fuzzy optimization problem taken from [14].

EXAMPLE 4.3 Let f̃ : R2 → F(R) be defined by f̃ (x1,x2) = (0,2,4)� x2
1⊕ (0,2,4)� x2

2⊕ (1,3,5),

where (0,2,4) and (1,3,5) are triangular fuzzy numbers.

This fuzzy-valued function is not H-differentiable as in the first (second) term, the derivative of the

real-valued function x2
1 (x2

2) is negative. Therefore, we can not apply necessary and sufficient optimal-

ity conditions proposed Pathak and Pirzada [14] for this function. But if we restrict the domain of

fuzzy-valued function R2
+ then we can see that the function is H-differentiable. By applying first order

necessary condition of Pathak and Pirzada [14], the critical point is x̄∗ = (0,0) but this point is not a

interior point of the domain so we can not check the sufficient conditions.

It is to be noticed that the fuzzy-valued function in Example 4.3 is not H-differentiable but it is gH-

differentiable on R. By applying first order necessary condition proposed in this paper, we get the critical

point x̄∗ = (0,0). We can easily verify the proposed results of second order necessary and sufficient

conditions for the minimization of the critical point x̄∗ = (0,0). Therefore, we say that x̄∗ = (0,0) is a

strict local minimum of the given fuzzy-valued function under linear order relation.
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We discuss a case study as an illustration.

EXAMPLE 4.4 The decision maker allows to vary the coefficients of the objective function ( the ap-

proximate profit ) in a certain range rather than exact real numbers. This variation in the real numbers

is represented mathematically using fuzzy numbers. Therefore, in the situation when the coefficients are

known approximately, the approximate profit per acre of a certain farm is represented by the following

non-linear fuzzy-valued function:

f̃ (x1,x2) = 2̃0� x1⊕ 2̃6� x2⊕ (4̃� x1 · x2))⊕ (−̃4)� x2
1)⊕ (−̃3)� x2

2), (x1,x2) ∈Ω⊂ R2,

where 2̃0 = (19,20,21), 2̃6 = (25,26,27), 4̃ = (2,4,6), −̃4 = (−6,−4,−2), −̃3 = (−5,−3,−2) are

fuzzy numbers and x1,x2 denotes respectively, the labour cost and the fertilizer cost. We have to deter-

mine the value of x1 and x2 to maximize the approximate profit.

Using fuzzy arithmetic, we can write

f̃ L
α (x1,x2) =



(19+α)x1 +(25+α)x2 +(2+2α)x1 · x2 +(−6+2α)x2
1 +(−5+2α)x2

2, i f x1,x2 ≥ 0

(21−α)x1 +(25+α)x2 +(6−2α)x1 · x2 +(−6+2α)x2
1 +(−5+2α)x2

2, i f x1 < 0,x2 ≥ 0

(19+α)x1 +(27−α)x2 +(6−2α)x1 · x2 +(−6+2α)x2
1 +(−5+2α)x2

2, i f x1 ≥ 0,x2 < 0

(21−α)x1 +(27−α)x2 +(2+2α)x1 · x2 +(−6+2α)x2
1 +(−5+2α)x2

2 i f x1,x2 < 0

and

f̃ U
α (x1,x2) =



(21−α)x1 +(27−α)x2 +(6−2α)x1 · x2 +(−2−2α)x2
1 +(−2−α)x2

2, i f x1,x2 ≥ 0

(19+α)x1 +(27−α)x2 +(2+2α)x1 · x2 +(−2−2α)x2
1 +(−2−α)x2

2, i f x1 < 0,x2 ≥ 0

(21−α)x1 +(25+α)x2 +(2+2α)x1 · x2 +(−2−2α)x2
1 +(−2−α)x2

2, i f x1 ≥ 0,x2 < 0

(21−α)x1 +(27−α)x2 +(6−2α)x1 · x2 +(−2−2α)x2
1 +(−2−α)x2

2 i f x1,x2 < 0.

Though the level functions f̃ L
α(x1,x2) and f̃ U

α (x1,x2) are not differentiable at x1 = x2 = 0, the fuzzy-

valued function is gH-differentiable. By adding the level functions, we get

( f̃ L
α + f̃ U

α )(x) = 40x1 +52x2 +8x1x2−8x2
1 +(−7+α)x2

2.

We apply the necessary optimality condition,∫ 1

0
α[∇( f̃ L

α + f̃ U
α )(x)]dα = 0.

Which gives a critical point (x1,x2) = (173/26,108/13). Checking sufficient condition at the critical

point, i.e. ∫ 1

0
α[∇2( f̃ L

α + f̃ U
α )(x)]dα

negative definite, for all x ∈ Ω. Therefore, the critical point is a strict local maximizer of given fuzzy-

valued function.
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5 Conclusions

The local and global minimizer of multi-variable fuzzy optimization problem are studied using the nec-

essary and sufficient optimality conditions. The optimality conditions to obtain the solution of uncon-

strained fuzzy optimization problems are proposed earlier Pathak and Pirzada [14],[13]. The comparison

of the optimality conditions is given in Table 1. The class of Hukuhara and generalized Hukuhara dif-

ferentiable functions are given in Table 2.

Table 1: Comparison of optimality conditions

Research work Hypothesis Optimality conditions Comments

Pathak and Pirzada

(2011) [13]

Hukuhara differentiability

and Linear order on FL(R)

Parametric optimality condi-

tions in terms of lower level

functions f̃ L
α with α = 0,1

1. Hukuhara differentiability exists under

very restrictive conditions.

2. Limited class of fuzzy-valued functions

are H-differentiable.

3. The order relation is linear, but it is de-

fined on L shaped fuzzy numbers.

4. The optimality conditions obtained are in

parametric form.

Pathak and Pirzada

(2013) [14]

Hukuhara differentiability

and Partial order on F(R)

Optimality conditions in

terms of α’s
1. Hukuhara differentiability exists under

very restrictive conditions.

2. Limited class of fuzzy-valued functions

are H-differentiable.

3. The order relation is partial, so not all

fuzzy numbers are comparable under this

order relation.

Pirzada Current work Generalized Hukuhara differ-

entiability and Linear order

on F(R)

Optimality conditions are in

integral form
1. Generalized Hukuhara differentiability is

more general.

2. More class of functions are gH-

differentiable (See Table 2).

3. The linear order relation is defined on

whole class of fuzzy numbers.

4. Any two fuzzy numbers are comparable

under this order relation.

5. The optimality conditions are in more

general form as they are independent of

any parameters and α’s.

6. We can apply these conditions to bigger

(general) class fuzzy optimization prob-

lems.
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Table 2: Class of Hukuhara and generalized Hukuhara differentiable functions (Pirzada and Vakaskar

[15])

Fuzzy-valued function Hukuhara differentia-

bility

Generalized Hukuhara differ-

entiability

Constant function: f̃ (x)=

ã, ã is a fuzzy number

For all x in R For all x ∈ R

Linear function: f̃ (x) =

ã� x

For x > 0 For all x ∈ R

Quadratic function:

f̃ (x) = ã� x2

For x > 0 For all x ∈ R

f̃ (x) = ã� xn, n is a posi-

tive integer

n-times H-

differentiable for

x ∈ R+

n-times gH-differentiable for

all x ∈ R

f̃ (x) = ãn � xn ⊕ ãn1 �

xn1⊕ ...⊕ ã1�x⊕ ã0, n≥

0

n-times H-

differentiable for

x ∈ R+

n-times H-differentiable for

x ∈ R

Sine function: f̃ (x) = ã�

sin(x) defined on [π,π]

One time H-

differentiable in

[0,π/2]

n-times gH-differentiable in

[0,π]

Exponential function:

f̃ (x) = ã� ex

n-times differentiable

on R+∩{0}

n-times gH-differentiable on

R
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