

Available online at www.sciencedirect.com

solid state communications

www.elsevier.com/locate/ssc

Solid State Communications 129 (2004) 791-796

High pressure phase transition in metallic LaB_6 : Raman and X-ray diffraction studies

Pallavi Teredesai^a, D.V.S. Muthu^a, N. Chandrabhas^b, S. Meenakshi^c, V. Vijayakumar^c, P. Modak^c, R.S. Rao^c, B.K. Godwal^c, S.K. Sikka^c, A.K. Sood^{a,b,*}

^aDepartment of Physics, Indian Institute of Science, Bangalore 560 012, India ^bJawaharlal Nehru Center for Advanced Scientific Research, Jakkur Campus, Jakkur P.O., Bangalore 560 064, India ^cHigh Pressure Physics Division, Bhabha Atomic Research Center, Mumbai 400085, India

Received 30 October 2003; accepted 5 December 2003 by C.N.R. Rao

Abstract

High pressure Raman and angle dispersive X-ray diffraction (ADXRD) measurements on the metallic hexaboride LaB_6 have been carried out upto the pressures of about 20 GPa. The subtle phase transition around 10 GPa indicated in Raman measurements is confirmed by ADXRD experiments to be a structural change from cubic to orthorhombic phase. Ab-initio electronic band structure calculations using full potential linear augmented plane wave method carried out as a function of pressure show that this transition is driven by the interception of Fermi level by electronic band minimum around the transition pressure.

© 2004 Elsevier Ltd. All rights reserved.

PACS: 62.50. + p; 78.30.Er; 61.10.Nz

Keywords: A. LaB₆; C. Raman scattering; C. X-ray diffraction; E. High pressure

1. Introduction

Hexaborides (MB₆) can be monovalent metals or semiconductors [1] depending on whether the metal ion M is trivalent or divalent, respectively, because the B₆ molecule in them needs two electrons from the metal to stabilize the divalent B₆ state. LaB₆, a monovalent and nonmagnetic metal, is of great technological importance as thermionic cathodes in electronic devices with high performance characteristics [2]. In the intermediate valence compounds CeB₆ and SmB₆, the elastic constant C_{12} is negative while in LaB₆ it has a very small positive value [3–5]. The breakdown of Cauchy relation (small value of C_{12} compared to the larger C_{44}) in LaB₆ is an indication of presence of volume-dependent long range forces. Such long range forces are speculated to be arising due to the occupied part of the conduction band formed by the anti-bonding orbitals of the B₆ molecules and the 5d e_g-orbitals of La atoms [6]. The fact that volume dependence can lead to violation of Cauchy relation and the small value of C_{12} , is evident from the behavior of C_{12} and C_{44} of mixed valence $Sm_{1-x}Y_xS$ with variable metal size and the divalent YbB₆ [5]. Application of pressure will result in an energy shift of the anti-bonding B₆ orbitals leading to a rise in the conduction band causing further lowering of C_{12} to induce structural changes under pressure. However, the pressure variation of electrical resistance and thermoelectric power of LaB₆ up to 10 GPa show a monotonic decrease [7] while that of divalent YbB₆ and EuB₆ suggest [8] evidence of mixed valence state at pressures above 10 GPa. The present work aims to investigate the high pressure behavior of LaB₆ experimentally using Raman and X-ray diffraction measurements. Also the first principles electronic band structure

^{*} Corresponding author. Address: Department of Physics, Indian Institute of Science, Bangalore 560 012, India. Tel.: +91-80-360-2238; fax: 91-80-360-2602.

E-mail address: asood@physics.iisc.ernet.in (A.K. Sood).