Infrared spectroscopy of germanium dioxide (GeO₂) glass at high pressure P. V. Teredesai, 1* D. T. Anderson, 1 N. Hauser, 1 K. Lantzky2 & J. L. Yarger³* Room temperature infrared studies have been performed on GeO₂ glass under quasi-hydrostatic pressures of 9.5 *GPa.* The mid-infrared absorption spectrum of GeO_2 glass $(g-GeO_2)$ shows two distinct vibrational modes, one at 560 cm⁻¹ (mid frequency peak) and another at 870 cm⁻¹ (high frequency peak). At pressures above 6 GPa, these two absorption peaks broaden and intensity in the region between them (~700 cm⁻¹) increases dramatically. We interpret this change in the infrared spectrum at high pressure as the onset and progression of the amorphous to amorphous transformation from a low-density tetrahedral glass to a high density octahedral network glass. Recently, many tetrahedral oxide glasses have been shown undergo a polyamorphic(1) or amorphous to amorphous phase transitions (AAT) at high pressure. (2) Examples include glasses in the silicate, germanate and chalogenide families as well as amorphous H₂O.⁽³⁾ High pressure studies of SiO₂ and GeO₂ glasses show evidence for an AAT above 30 GPa and 6 GPa, respectively, (3) the new amorphous phase in both SiO₂ and GeO₂ being a high density six-coordinated glass. (4-10) While the glasses of amorphous silicates and germanates can undergo transitions to a new high density amorphous phase, so can the tetrahedral crystalline phase, which often shows a crystal-to-amorphous transition in a similar pressure region as the AAT seen in the amorphous materials. (11) Hence, either pressurising the ambient glass or tetrahedral crystalline material can be used to reach the high density amorphous phase in SiO₂ and GeO₂. either through modifications of the medium range order⁽¹²⁾ or through coordination changes of the cations in the tetrahedral network. (7-10) High pressure Raman study⁽⁸⁾ carried on GeO₂ glass (g-GeO₂) indicated an The average Ge-O distance, <Ge-O>, in both g-GeO₂ as well as q-GeO₂ was found to increase from 1.73 Å (tetrahedral structure) to 1.85 Å (octahedral structure) between 6–12 GPa. (7) The wide range of pressure (6–12 GPa) where both coordinates exist indicated that the 4-6 coordination change was gradual. On decompression, only g-GeO₂ showed complete reversibility to four-fold coordination with a large hysterisis, having <Ge-O> around 1.73 Å at 2 GPa, whereas <Ge-O> in q-GeO₂ dropped down only to 1.8 Å, somewhere intermediate between the Ge-O distances of octahedral and tetrahedral structures. This observation forces one to think about two possibilities: on decompression from high pressures, (a) there is co-existence of 50% tetrahedral and 50% octahedral GeO2 and (b) the high coordinated GeO2 structure doesn't relax back to four-fold structure instead stabilises in the intermediate five-coordinated GeO₂ structure. Recent in situ x-ray and neutron diffraction measurements on g-GeO2 have shown g-GeO₂ to undergo a metastable phase of average coordination number five between 6–12 GPa. (14) As an analogy, the existence of five-coordinated Si cations has ¹Department of Chemistry, University of Wyoming, Laramie, WY 82071, USA ²Department of Chemistry, St. John Fisher College, Rochester, NY 14618, USA ³Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA Amorphous GeO₂ is known to respond to pressure AAT between 6-12 GPa where the gradual coordination change was marked by a change in the pressure derivative of the frequency shifts of the main Raman band, broadening and weakening of this band, and the appearance of a low frequency feature at 240 cm⁻¹. A high pressure Raman study carried out on crystalline GeO₂ of quartz type (q-GeO₂),⁽⁹⁾ showed a crystal to amorphous transition with an onset at 7 GPa. These studies pointed to saturation in the pressure dependence of the frequency of the main A₁ (441 cm⁻¹) Ge–O–Ge symmetric stretching mode and a marked increase in the intensity of this mode near 7 GPa. Above 7 GPa, the intensity of A₁ mode dramatically decreases and a broad band on the high frequency side of this mode develops. (9) Infrared study of q-GeO₂ carried to 30 GPa, shows a gradual amorphisation towards an almost 6 coordinated amorphous GeO₂ between 6–12 GPa. (13) ^{*} Corresponding authors. Email: pallavi.teredesai@gmail.com, Jeff. Yarger@asu.edu