

Single Crystal X-Ray Structure of BeF₂: α -Quartz

Pallavi Ghalsasi[†] and Prasanna S. Ghalsasi^{*,‡}

† Department of Physics, Indian Institute of Technology Gandhinagar, Ahmedabad 382424, Gujarat, India, and ‡ Department of Chemistry, The M.S. University of Baroda, Vadodara 390002, Gujarat, India

Received June 23, 2010

We report for the first time, the synthesis and X-ray diffraction studies of single crystals of BeF₂. The crystals were obtained during the sublimation of amorphous BeF₂ under static reduced pressure. BeF₂ crystallizes in the chiral trigonal space group $P3_121$. A single-crystal X-ray diffraction study on these crystals shows that each of the Be atoms is bonded to four F atoms, and each of the F atoms is bonded to two Be atoms with associated Be-F bond distances of 1.5420(13) and 1.5471(13) A, showing an almost regular tetrahedron. The infrared spectrum of these crystals recorded at room temperature shows distinct peaks around 770 and 410 $\rm cm^{-1}$.

Introduction

The beryllium fluoride $(BeF₂)$ molecule has very high ionic character due to the large difference in electronegativity between the F and Be atoms.¹ Even so, its bonding is considered highly covalent in character over other alkaline earth fluorides. It is a very interesting molecule, as its gaseous form shows a $CO₂$ -like linear structure.² Its molten form shows water-like resemblance,³ and it has been a subject of research for its amorphous to amorphous transition.⁴ While, in the solid state, many of the other alkaline earth metal fluorides crystallize in $CaF₂$ structure,⁵ Be F_2 prefers a tetrahedral network. Recently (TX₄) tetrahedral units attracted considerable interest as a result of the properties of these frameworks, which include porosity, ion exchange selectivity, and unusual electronic/magnetic behaviors.⁶

The corner-sharing tetrahedral framework of $SiO₂$ is quite similar to that of BeF_2 .⁷ These striking structural similarities between $SiO₂$ and $BeF₂$ have been studied for various amorphous phases where the average structure is determined by neutron diffraction and/or Raman spectroscopy. This remarkable resemblance explained in the literature is due to similar radii ($r_F = 1.33$ A; $r_{\text{O}} = 1.32$ A) and polarizabilities of F⁻ and O^{2-} ions and the fact that, for both materials, the radius ratio of cation to anion is appropriate for tetrahedral bonding $[r_{\text{Be}}/r_{\text{F}}=0.26; r_{\text{Si}}/r_{\text{O}}=0.32]$.⁸ The strength of the Be-F bond is much less than that of the Si-O bond, and hence BeF_2 may be considered as a weaker analogue of $SiO₂$, having a lower melting point (540 °C), hardness, higher solubility, and chemical reactivity.

The preparation of BeF_2 by the mixing of $BeCl_2$ with excess of NaF seems to be an extremely simple procedure. But, in reality, to get pure $BeF₂$ and crystallize it without the presence of H2O molecules is a challenging task. The latter difficulty is because $BeF₂$ has an electron-deficient beryllium atom, which readily accepts a pair of electrons to complete its octet, if suitable coordinate covalent bond donors are available. Water is such a donor, so the species $BeF_2 \cdot OH^- \cdot H_2O$ and $BeF_3^- \cdot H_2O$ predominate in the presence of water, along with BeF_4^2 , while their relative amounts depend on the ratio of F to Be. Note that all of these beryllofluorides would be tetrahedral, making them strictly isomorphous to a phosphate group. This peculiarity of beryllofluorides is exploited by biologists to understand protein/ATP structures.⁹ On the other hand, BeF_2 is a subject of fundamental importance to the glass community, where routine techniques of formation and/or purification continue to be based on high temperature and low pressure. We used the latter approach to get the crystalline form of BeF_2 , which is the subject of the present manuscript.

Experimental Section

Beryllium fluoride (BeF_2) was obtained from Alfa Aesar in the form of a white powder (99.5%, metals base). For sublimation of this commercial $BeF₂$ sample, a homemade stainless steel bomb was used. The description of this bomb in brief is as

^{*}To whom correspondence should be addressed. E-mail: prasanna. ghalsasi@gmail.com.

⁽¹⁾ Greenwood, N. N.; Earnshaw, A. Chemistry of the Elements, 2nd ed.; Butterworth-Heinemann: Oxford, U. K., 1997.

⁽²⁾ Yu, S.; Shayesteh, A.; Bernath, P. F.; Koput, J. J. Chem. Phys. 2005, 123, 134303.

⁽³⁾ Agarwal, M.; Chakravarty, C. J. Phys. Chem. B 2007, 111, 13294.

^{(4) (}a) Yarger, J. L.; Wolf, G. H. Science 2004, 306, 820. (b) Brazhkin, V. V.; Lyapin, A. G. J. Phys.: Condens. Matter 2003, 15, 6059.

⁽⁵⁾ Hargittai, M. Chem. Rev. 2000, 100(6), 2233.
(6) (a) Wells, A. F. *Phil. Trans. R. Soc. London, Ser. A* 1986, 319, 291. (b) Delgado, O. F.; Paz, F. A. A.; Dress, W. M.; Huson, D. H.; Klinowski, J.; Mackay, A. L. Nature 1999, 400, 644. (c) Foster, M. D.; Simperler, A.; Bell, R. G.; Delgado, O. F. F. Spectrochim. Acta 1972, 28A, 1103. (d) Narten, A. H. J. Chem. Phys. 1972, 56, 1905. (e) Paz, A. A.; Klinowski, J. Nat. Mater. 2004, 3, 234. (f) Zwjinenburg, M. A.; Cora, F.; Bell, R. G. J. Am. Chem. Soc. 2008, 130, 11082.

⁽⁷⁾ Wright, A. F.; Fitch, A. N.;Wright, A. C. J. Sol. Stat. Chem. 1988, 73, 298.

⁽⁸⁾ CRC Handbook of Chemistry and Physics, 63rd ed.; CRC Press: Boca Raton, FL, 1982.

⁽⁹⁾ Petsko, G. A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 538.